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ABSTRACT

The statistical properties of low-level wind-turbﬁ]ence data
were cbtained with the model 1080 total vector anemometer and the
model 1296 dual split-Fi]m anemometer, both manufactured by Thermo-
~ Systems Incorporated. The data obtained from the above fastvresﬁonse
probes were compared with the results obtained from a patr of Gill
propeller anemometers.

The digitized time series representing the three velocity com-
ponents and the temperature were each divided into a number of blocks,
the length of which depended on the Toﬁest frequency of fnterest-énd'
also on the storage capacity of the available cbmputer. A moving-
average and differencing high-pass fi]ter was used to remove the trend
and the Tow ffequency components in the time series.

The degree of nonstationarity of each time series was determﬁhed ‘
by using a non-parametric statistical test on the statistical quahtitieé
calculated for each block in the time series. Besides the mean, the
variances and the covariances of the fluctuating velocity components
and the fluctuating temperature, spectral and cross-spectral estimates of
each of the time series were obtained with the use of the fast Fourier
trans formation (F.F;T) technique. A special F.F.T.algorithmic with a
no-bit reversal procedure for the analysis of series of long duration
and high sampling rate (200 samples per second) has been developed.

In addition, a time series representing the streamwise fluctuating
velocity component was simulated from the éemLemmrica1 von Karman spectrum
equation. fhe spectrum calculated from the simulated time series was com-
pared with the original spectrum function from which the data was cbtained.

'The calculated results for each of the anemometers used are represented

in grabhica] or tabulated form. The Fortran program for the entire data

analysis procedure is listed in appendix B.
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CHAPTER -1
INTRODUCTION

With the increasiﬁg necessity of understanding the effect of the
turbulence on human activities in the atmospheric boundary layer, the
knowledge of wind and temperature fluctuations becomes essential.
This dissertation presents a statistica]lanalysis of fluctuating wind
data consisting of three velocity components for each of the three
spatial directions and temperature in the time domain. Correlations
and spectra will be calculated by using the experimentél data ob-
tained from T.S.I. split - film anemometers and a consequent data

acquisition system as reported by Tieleman et. al. [95].

1.1 STATEMENT OF THE PROBLEM

Although geophysical flows provide much larger Reynolds numbers
than wind tunnel f1owé, retatively few accurate results of the wind
turbulence measurements in the atmospheric boundary layer are avail-
ahle because of the complexity and inadequacy of the required instru-
mentation. Existing measuring equipment usually cannot provide
enough information for the three dimensional structure of the turbu;
lence and its evolution with time. The selection of the three dimen-
sional split-film anemometer (TSI-1080D) in this research program has

many advantages over most of the presently used anemometers [95].



Insufficient know]edge of the ground wind structure is due to
a lack of extensive experiments and due to large volumes of data
necessary to obtain accurate and meaningful fesu]ts. In order to
understand the microstructure of turbulénce, we must not enly consider
the energy spectrum but also several statistical quantities which are
relevant to the basic mechanics of the motion of the air. The measure-
ment of the ground wind structure and its statistical analysis becomes
essential to the solution of such practical problems in the atmo-
spheric boundary layer as low altitude operations of aircraft, design
of many engineering structures, and atmospheric diffusion. It is
therefore imperatfve to improve statistical calculation techniques of
the measured quantitfes especially when dealing with large volumes of
data even beyond the storage capacity of the existing computers.

The purpose of this dissertation is to analyse the data based-up-
on the general aspects of time series aﬁalysis. First, the analysis
in the time domain where the means, variances and covariances of
blocked subseries are calculated. Second, the analysis in the fre-
quency domain where the power- and cross- spectral density estimations
are calculated.

The power spectrum which provides an insight to the spectral dis-
tribution of the kinetic energy of the turbulence, is basic to the
understanding of the structure of the turbulence. The cross spectrum
concerns itself primarily with the transport and conversion of energy
and the transport of momentum and heat in the surface layer. A1l of
these are fundamental in the understanding of micrometeorological

processes in the atmosphere. The real part of the cross spectrum.is



€alled cospectrum which for example, shows the effect of height above
the ground on the scale of the eddies. The imaginary part of the
Cross spectrum is called quadrature spectrum which gives sohe infor-
mation about the vertical extent of eddies; Therefore the spectral
‘behavior of atmospheric¢ turbulence is of considerable and practicaT
importance.

Power and cross-spectral analysis of méteoro1ogica1 time series
are generally based on the assumption that these series are stationary
in the sense that their statistical properties are invariant with
translations in time. At present, fhere exist techniques to analyse
stationary time series records, but the technigues available:for the
analysis of non-staticnary time series records are still inadequate
and do not lend themselves to méaningfu] interpretations of physical.
brobIem. It is therefore necessary to use proper filtering techniques
to adjust the non-stationary time series so that under certain cir-
cumstances the existing statistical analysis for stationary time
series may be used on these non-stationary data. It is also assumed
that the time series are ergodic which permits time averaging to be
used in place of ensemble averaging.

Meteordlogical time series can mostly be represented as the sums
of periodic (regu1ar) and stationary (irregular) components since
they almost always contain some definite periods, such as days, years
or even decades etc. The Tonger than record length trends must be
filtered out in order to eliminate the bias introduced in the spectral
ca?culations. A moving-average and differencing high-pass filter is

applied to our time series so as to create a new, mean free, time series.



Theré are methods available to calculate the correlation functions
via the fast Fourier transform method and to apply the thoroughly
studied lag window to obtain the smoothed spectrum. For large volumes
of data this is not considered to be an economical and practical
approach. Deve1opment.of direct Fourier transform methods as applied
to meteorological data and consequent smoothing techniques are still
in their infant stages and have not been thoroughTy-studied; The reason
for this is part1y due to the potential flexibility of the fast Fourier
Atransform, which is much greater than the indirect or Blackman-Tukey
method.

The direct Fourier transform method or the pericdogram approach
is used for the calculations of power and cross spectra in this
dissertation. A new algorithm is deve]oped for the fast Fourier
transformation which requires no bit-reversal procedures during the
final stages of the calculations. A computer program based on non
hit-reversal calculations is developed. Various time-domain smoothing
functions have been applied to check the spectral variation. The
calculated power and cross spectra agree fa1r1y'we11 with those re-

ported in the literature of atmospheric turbulence.

1.2 REVIEW OF LITERATURE

The significance of corfe}ation between the velocity of a fluid
partié1e at one time and that of the same fluid particle at a later
time or between simultaneous velocities at twd fixed points was devel-
oped in 1921 by G. I. Taylor [90]. Taylor [91] further defined the

scale of turbulence when it is applied either to the Lagrangian or to



the Eulerian concepts of fluid flow. The connection between the
spectrum measured at a fixed point, and the correlation between
simultaneous values of velocity measured at two points was also pro-
posed by Taylor [92] in 1938. He pointed out that the correlation and
the spectrum formed a Fourier transform pair.

In general there exist two methods for the digital spectral
analysis of statiohary time series. The method which requires to
calculate the correlation function first before taking its Fourier
transformation to obtain the spectral density function is called the
indirect method. Instead of calculating all the correlation functions,
the direct method of computing spectral-density estimates is achieved
by squaring the quantity which is obtained directly from the Fourier
transformation of the raw observations.

The spectral analysis using the indirect method has become a
significant tool in the statistical analysis of stationary time series
since the pioneer work of Daniel [22] and Bartlett [3,4]. They esti-
méted consistent estimates of the spectral density function by mod-
ification of the c]assfca1 periodogram (i.e. ﬁarmonic) analysis.
Optimum consistent estimates of the spectrum of a stationary time
geries were studied by Parzen [74]. Most of the work involving
spectral analysis was done primarily by mathematical statisticians in
the fifties. The practical situation of designing a spectral analysis
satisfying many specific conditions had not been studied until Black-

man and Tukey [10] in 1958.



With the advent of the electronic computers and improvement in
numerical calculation techniques in spectral analysis, many valuable
papers were published in the earlier Sixties (Jenkins[49], Parzen {751,
Tukey [96] ). The users of the spectral analysis were still faced
with the problem that if only a sample record of finite length is
given, and no background information.is available, there still existed
" no precise method of obtaining an estimate which could be considered
the most accurate one. One can actually construct many estimates of
the spectrum by using different smoothing technigues, yet the optimum
one, relies on the role of the chosen bandwidth [84].

The spectral ¢a1cu1ation5 via correlation functions or indirect
method have been theoretically well established in the early Sixties.
The periodogram approach or direct Fourier transform method in the
time series analysis had been considered to be impractical because of
the amount of computations involved. Actually, the periodogram as an
astimate of the spectral density function of a stationary tfme series
has had a long and controversial history starting with A. Schuster in
1898 when he was investigating the hidden oscillations in meteorological
phenomena with periods of 26 days. In 1965, Jones [53] reappraised
the pefiodogram in spectral analysis and poiﬁted out some advantagés
over the indirect method for multiple dimensional processes.

During the controversy over the choice of direct or indirect
approach to the calculation of the spectrum of stationary time series,
the revolutionary paper on the Fourier transformation by Cooley and
Tukey [19] was published in 1965. The algorithm they presented for

the calculation of complex Fourier series permits the reduction of



operations by a factor of NZZ(N logo N) for a data sample length N.
The latter sheuld have a magnitude which is equal to an integer power |
of two. The operation consists of a complex multiplication followed
by a complex addition. Numerous papers have been published to improve
the algorithm or to explain the paper by Cooley and Tukey through -
different mathematical formulations. Ferrie [28] studied the relative
advantages and disadvantages of various algorithms-on the basis of
execution time, storage and accuracy. He concluded that no single
fast Fourier transform algorithm represents the best choice.

Following the discovery of the FFT (Fast Fourier Transform)
algorithm, earlier methods [10.75] no longer can be relied upon for
the best statistical and computational procedures. Bingham et. al.
[9], Cooley et. al. [18] and Welsh [105] presented various techniques
for the estimation of power and cross- spectra via FFT, whose appli-
cations in electronic engineering have been published in two exclusive
issues in June 1967 and June 1969 of IEEE transactions on Audio and
Electroacoustics.

The'direct and indirect methods do not produce the same results
though both have relative advantages [27]._ For a spectrum with a
large slope, the direct method permits more window leakage than the
‘jndirect method. The indirect or correlation function method is more
effective than the direct FFT or periodogram method in computing the
spectrum of short time series. For large data samples, the direct or

FFT method seems to be the only feasible one. The indirect method has



been considered not practical to handle a time series exceeding
50,000 data points for spectral estimations.

Oort and Taylor [69] applied the FFT technique to analyse the
spectrum of the horizontal wind speed and to investigate the diurnal
variability in the kinetic energy. Ryznar [85] measured wind and
temperature profiles and turbulent fluctuations of wind velocity and
temperature under various stability conditions of horizontally
homogeneous turbulence in the atmospheric surface layer. He concluded
that the integration.of the spectrum -did not obtain the corresponding
total variance prior to the spectral transformation. The reason is
obviously due to the application of a "cosine bell” data window which
reduced the variances of the spectral density estimate by a factor of
3/8 [43]. Kaimal et. al. [55] calculated power spectra and cospectra
of turbulence in the surface layer using the fast-Fourier transform
technique. A new short time series was generated from thg original
time series by averaging the neighboring data points to investigate
the information in the lower frequency range.

Most of the books written on time series analysis such as
Anderson [2], Grenander and Rosenblatt [41], Hannan [42], Wold [106]
and the Brown symposium edited by Rosenblatt in 1963 [24] are con-
cerned almost exclusively with theory. Pracf%cal applications of time
series analysis started with Blackman and Tukey [10], though it was
primarily from the point of view of the communication engineer.

Books such as Brown [13], Fishman [31] and Granger and Hatanaka [39]

provide a heuristic introduction to economic time series. The books .



worthy of engineering applications are Bendat and PiérsoT 6],
Jenkins and Watts [51], Otnes and Enochson [67] and the Wisconsin
seminar edited by B. Harris [72] in 1966.

The problem of obtaining the best spectral estimate via the fast
Fourier transform lies in the selection of the smoothing function
which depends also on the type of the data to be analyzed. In dealing
with different types of data such as atmospheric wind data, biological
data, acoustical data or economical data, the selection of the same
smoothing function could lead to different interpretable results.
Only by the proper choice of a suitable smoothing function in spectral

analysis can meaningful results be achieved.



CHAPTER 11

DATA PROCESSING SYSTEM

The atmospheric wind turbulence data are collected through a
three-dimensional split film anemometer (TSI-1080D) which consists
of three split film sensors and a copper-constantan thermocouple
for ambient temperature measurement. Each sensor consists of a
0.006 inch diameter gquartz rod coated with a platinum film of approxi-
mately 1000 R in thickness. The total sensor length is 0.200 inches
with approximately 0.08 inches of active usage.

Data was sampled at a rate of 200 samples ber second, and a
special data acquisition and handling system has been developed to
handle samples of'half an hour duration. Detailed explanation of the
data acquisition and handling system was presented in a report by
Tieleman et. al, [95].

The data acquisit{on and data hand1ing system was located in an
instrumentation trailer poéitioned near the V.P.I. and S.U. Tow speed
windtunnel. The instruments were used with a 350 ft. long connecting
cable since mounting on the 300 ft. meteorological tower at NASA
Wallops Station was proposed. After lengthy calibration in the
Tow speed windtunnel, the probes were mounted in the atmosphere on top
of the exchange section of this windtunnel. Since only a limited

amount of time was available to test the probes in the atmosphere and

10
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also since movement of the instrumentation trailer was a rather com-
plicated operation, the instruments were tested in the atmospheresat
the best location which could be reached with the 350 ft. cable from
the position of the instrument trailer. The air flow on the top of
the exchange section of the windtunnel (approximately 40 ft. above the
ground) was a great deal influenced by surrounding buildings as well
as the windtunnel and the exchange tower itself.

In addition to the fast response T.S.1. probes, two slower res
Sponse Gi11 anemometers (see Appendix A) were positioned next to the
T.S.I. probe so that comparisons could be made. The T.S.I. probes
were positioned in a horizontal plane and could be rotated about a
vertical axis by an antenna rotor into the prevailing wind direction.
In the report by Tieleman et. al. [95] it was concluded among pther
things that the T.S5.I. probeé could operate with the best accuracy
when they were directed into the mean wind.

The two Gill anemometers were mounted also on the antenna rotor
so that the three sensors could be moved all simultaneously. One of
the Gi1l anemometers was mounted parallel to the T.S.1. probe and the
second Gi1l anemometer was mounted perpendicu]ar to the first one in
the horizontal plane. Only two Gill anemometers were available so that

only statistics from the two horizontal components could be compared.

2.1 STATISTICAL ANALYSIS

Digitizéd:data from the wind sensors were written on a 9-track
magnetic tape in blocks with 209 samples.in each block. Computer

programs were developed [95] to convert the raw data from analog



12

voltages to velocity components and temperature by using IBM 370/755
digital computer.

The computed velocity components and temperature were again stored
on a 9-track magnetic tape with the block size increased twice to 418
points in order that slight reduction in data-storage space on the tape
and a saving of calculation time in the computer could be achieved.

The data was collected at a rate of 200 samples per second. and
therefore 360,000 samples were recorded during a half hour period., The
sample size N is determined by the total recbrding time T and by the

sampling interval at through the following relationship

- L :
N = T (2.1.1)
The sampling rate, fs‘ of the collected data is considered as an
important factor in the data reduction process. This rate 1is the key
to the determination of the Nyquist frequency, f,, which is the highest
frequency one can obtain without introducing aliasing. The sampling

rate and the Nyquist frequency are related by the following expression

{

= 1
f.o=5 £ . (2.1.2)

Let Ai(n), i=1,2,...,4 represent the three velocity components
 and the temperature recorded by the T.S.I. probe. The first three sub-
~ scripts 1,2,3 denote the components of the instantaneous velocity vector

in the coordinate system as determined by the directions of the sensors
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on the T.S.I. probes (X, Y, Z).‘ Subscript 4 represents the temperature
at the point where the probe is located.

The time series are divided into many blocks. The determination
of the number of data points in each block depends primarily on the
storage capacity of the available digital computér. The maximum number
of data points should be chosen so that enough spectral information
may be obtained in each block during subsequent spectral analysis. The
basic requirement is that the selected block size should be long com-
pared to the random fluctuations of the time history. ' The sample mean
and the sample probe yaw angle are calculated from the block mean and
the block probe yaw angle. The mean value, the probe yaw-angle, and
the variance .in‘each block may be used to test the sample for

stationarity as described in section 2.2,

2.1.1 MEAN VALUES TN EACH BLOCK

The sample is broken into M non-overlapping blocks eacﬁ of which
contains n points, so that Mn = N. The wind turbulence data may be
considered to be a combination of a mean component and a quctuating
component. For a given number of n data points of the i-th time series
A; (n) in each block, the mean component may be described if ergodicity

is assumed by the average value of all n values,
n e .
E A’-i(j), i=]’.n-,4, ) (2.]03)

where subscript i refers to the number of the time series and superscript
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m denotes the block number and the bar describes mean value. By
choosing n = 8192 and M = 44, we are analysizing 360,448 data points
in approximately a sample of one half hour duration. The choice of
8192 data points for each block is to meet the requirement for appli-
ation of the fast Fourief transform algorithm that the number of data
points to be transformed must be a power of two. Also storage re-

strictions in the digital computer 1imits the block size.

5.1.2 PROBE YAW ANGLE IN EACH BLOCK

For each block of data points, a probe yaw angle Bm is calcu-
lated based on the previously obtained block mean values. The probe
~ yaw angle is determined by the angle between the T.5.I. probes and the
direction for which-the lateral component of the mean velocity vanishes.
This last direction fixes the so-called mean wind coordinate sysfem,
The x-direction 1S the direction of the mean wind, the y-direction
(1ateral direction) perpendicular to the x-direction in the horizontal
plane and the z-direction is vertically upward. |

The velocity components calculated initially in the coordinate
system as determined'by the directions of the sensors on the T.S.I.
probes have to be transformed into components in the mean wind co-
ordinate system for which the statistical QUantities of the fluctu-
ating velocities are of interest.

The tfansformation of the ve1oci£y components from one coordinate |
system to the other is carried out in two steps. First, one obtains
the components in the probe oriented coordinate system by the following

relationship
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(2.1.3)

where Eij’ §=1,2,3 and j=1,2,3, are the direction cosines for the
sensor oriented coordinate directions X Y Z and the probe oriented
coordinate directions x*y*z*, the geometry of which is shown in Fig.
(1a). It is seen that the x* coordinate direction coincides wifh the
probe axis, the origin of which is located at the probe tip. The y*-
axis is perpendicular to the probe in a horizontal plane while z*-
axis fs vertically upward..

| Through geometric relations, Eg. (2.1.3) may be written in the

following matrix form

A 0.57735 0.57735 0.57735

d A
*
YR} - 0 0.70711 -0.70711 | { Ay } (2.1.4)
—JTI* =N
A3 -0.8165 0.40824  0.40824 A3

L ) L J \ J

The second step is to transform to the mean wind coordinates. This
further transformation between the probe oriented coordinate system
x*y*z* and the coordinate system in the mean wind direction x, y, and
z, as shown in Fig. (1b), may be achieved by the following relationship

_m 4
U; = Ekjﬁﬁ 3=1,2,3 (2.1.5)

or in mtrix form
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[ -m A —_— — . *
) : T \
U1 cosp -sing O AT
-m o
1Us 7 = ) sinB  cosp O 1A ) (2.1.6)
-m *
m
u, | ~ 0 0 1 _ A3
E

By combining the Eqs. (2.1.4) and (2.1.6) one can determine the

X component of the block mean as follows

oom
T, =

, = 0.57735 cosg: K| + (0.57735 cosp - 0.70711 sing) K

+ {0.57735 cosg + 0.70711 sina)‘ng : (2.1.7)

Maximizing the mean wind component in the x-direction wiFh
respect to the probe yaw angle (i.e., dﬂ?/ds = 0, or similarly

—In
vanishing of U2) one obtains an expression for the block yaw angle

A - KD
2 3 Y m=] !2’---’M ] (2-1 .8)

SRR

tang, = -1.22457

The change of the probe yaw angle in each block indicates the
shifting of the mean wind as averaged over 40.96 seconds (the
latter is the total real time for each block). If there are signi-
ficant changes in the block yaw angle from one block to the next,

then we have reasons to believe the data to be nonstationary. The
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same expressions 2.1.4, 2.1.6, and 2.1.8 may be used to determine
the éamp1e yaw angle and consequently the sample means, sample
ﬁariances and sample covariances of the velocity components in the

X,¥,Z coordinate directions.

2.1.3 Block Variances of the Time Series

The variances of the velocity components and temperature for

each block are determined by the following equation

m n
2 .1 A (3 . My 2
% = n jzli Ai(J) Ai(J) - (Ai) s

i=1,..,4 (2.1.9)

where the subscripts 1,2,3 represent the three velocity components and
subscript 4 denotes the temperature. The positive square root of the

variance is cai]ed the standard deviation and is calculated by

—sm 1/2 .
M= (o2) ., i=1,...4 (2.1.10)

i i
where m again denotes the block number. The block standard-deviations
~calculated by Eq. {2.1.10) will also be used to determine the non-
stationarity of the data by using a statistical test which will be dis-

cussed in section (2.2).

2.1.4 Samplé Mean and Sample Probe Yaw Angle

The sample mean and the sample probe yaw angle are simply determined
from the arithmetic averages of the block mean values and the block

yaw angles in each sample by the following formulas
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Lol Y a - .(21m
_i M =.I _i [ as ey als
and
A Y AB '
tang = - 1.22875 ( . (2.1.12)

R+ Ryt Ay

where M is the toté1 number of blocks or subseries.

The sample mean value and the sample probe yaw-angle will be used
to determipe the ye]ocity components in the mean wind coordinate
system by the transformation {2.1.4) and (2.1.6). |

Following the determination of the sample mean values for each of
thé three velocity components and the sample probe yaw angle in the
data processing computer program called "DATP1", the trend and long
period fluctuations will be removed through a progrém calied "TREND".
The theory of this filtering process will be described in section (2.3).
The filtered data will be used to compute sample variances and co-
variances as well as their respective values in the mean wind direc-
tions through coordinate transformafions. These computations will be

included in another data processing computer program called "DATP2".

2.2 Statistical Test

The computed statistical properties for each block as described
in the previous section 2.1 from a single sample record can be used
to test the stationarity of the time series. The wide variations of

the probe yaw angle may indicate relatively large angular shifts in the

wind direction .
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If the statistical propertﬁes thus calculated do not vary signifi-
cantly from one block to the next, one may be assured to a certain
degree stationarity of the time series. Otherwise, the data of interest
might contajn nonstationarities and are not fit for further analysis.

withoﬁt the detailed know1édge of the frequency composition of
the calculated statistical properties, a non-parametric approach is
necessary to determine whether or not the data are stationary [6]. A
non-stationary trend test in either the mean or the variance is
adapted from Kendall and Stuart [58]. The theoretical derivation is
based on a paper written by Mann [65].

Suppose the block mean of each of the velocity components-or the
block yaw angle or their standard deviations are denoted by

S'ls 52, 835-.-3 SM »

where M denotes the total number of blocks in the sample.
Now, a reverse arrangement of such a set of block variables is
defined as to occur every time
Sj>S; for all j > i
and i = 1,2,3,..., M-1.
For a given value of index i, the number of reverse arrangements

for this given i is denoted by Ty such that

M
T' = E T" s (2-2-1)
Pogeia Y
where
{

0 if Sj < Sy
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Now, the total number of reverse arrangements is eipressed by

M-1 M-1T M '
T = E T'i = E Z T_iu . (2'2'2)
i=1 i=1 j=itt M

In the case the set of block variables shows an upward trend as |
far as their magnitude is concerned, the total number of reverse ar-
rangements can be expected to be some relatively Targe number. Conversely,
if the set shows a downward trend the total number of reverse arrangements
is relatively small. If no discernible trend is present the total number
of reverse arrangements is some jntermediate number.

The hypothesis Hy of no trend present against the a1térnative

of a trend being present at an o-level of significance can be ex-

pressed by
Reject H if T {-%-; M), T< t(T-%; M)
(2.2.3)

In other words this hypothesis is similar to a symmetric 2-sided
confidence interval for T, with a confidence coefficient, 1 - a, |

and a lower limit, T = t(l-%; M). Therefore, for all T,

Py { T ST<Ty} = 1-a. (2.2.4)
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For a large number of block variables (i.e. larger than 10}, a
normal distribution for the total number of reverse arrangements of
each set of block variables can be assumed. So that, the estimated

*
value of T, T can be given by [64]

* _ TeET]
T = . . 2.2.5
[VAR(T)]'/2 ( | )

where the average value and the variance of the total number of re-

verse arrangements of each set are found to be

E[Y] = M‘T—]—l , (2.2.6)
and
3 2 . ' .
VAR[T] =22 * 37“; -5M (2.2.7)

respectively. These'expressions are only valid when the set of block
aﬁerages does .not show a ‘trend.

The standard normal distribution function of the estimated values

of T for an asymptotic N(0,1) distribution when Ho is true, is given

by
*

T &
2z

- el ds (2.2.8)

e [T]=
‘/2',].? .
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where

s ) -'ﬂiﬂill
SR dies vl 2:2.9
/3R M - BN |
72

The right hand side of eq. (2.2. 9) is seen to be in the standarized

S’ - P where S$' =T+ 2‘- p o= UM1) | and o - {VAR[T]}1/2-

form of T

If the normal variable §f is not "standard",-its value must be stan-

darized according te T* =

* .
The probability that the value of T is less than T for a given
o-level of significance can be written as
(2.2.10)

PLT<T,1=0[T1]

[}
=3

where T js the percentile of the standard Normal Distribution. By
choosing different values of a, i.e. 0.95, 0.975, 0.99, the T value
can be obtained from the standard distribution table [TABLE IJ.
For different values of T*, a table of reverse arrangement distribution
has been generated by using eq. (2.2.9). For different a-level of
significance, and different number of blocks M, the values of
t( M) and t{1 - 2, M) are given in Table I1.

If the value of the total number of the reverse arrangements falls
outside the range in our criterion eq. (2f2.4) for o = 0.05, then a

possible error of 5% can be made if the hypothesis that the data are
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stationary is rejected. Clearly one wishes to commit such an érror
only rarely. If the.value of T falls outside the range for a = 0.01,
then one will have less chance to make this error, and consequently
one has more confidence to reject the hypothesis that the data are
stationary. |

This nonstationary trend test is generally effective in testing
against Tinear or monotonic trends, as shown in Fig. 2 and ineffective
against the type of nonstationarities as shown in Fig. 3 which show
a reversal in the trend.  The trend test is generally not successful

in testing against the type of trends as shown in Fig. 4.

2.3 Removal of the Trend

Trend removal has been considered as an jmportant step in the
digital processing of random data. Large distortions can occur in
the calculations of Variances, covariances and spectral quantities if
trends are not removed from the data.

Trend removal is a special case of a general filtering process.
Filters are designed to pass either low or high frequencigs of the
signal while attenuating or eliminating respectively high or low fre-
quency components. Filters, which pass low frequency components are
called low-pass filters while others which pass high frequencies a}e
called high pass Filters. A third type of filters which passes a
band of intermediate frequencies and attenuate both very low and very
high frequencies in the signal are called band pass filter.

For meteorological time series, it js .usually assumed that these

series are statistically stationary and can be represented as sums of
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regular (periodic) or irregular (stationary) components superimposed

on each other. It is observed that these series almost always contain
some definite periods that are due to certain external infTuences such
as the time of day the data was taken and long perjodic oscillations due
to the presence of upstream obstacles. Since theserperiodic components
may not enter into our statistical analysis of the observed time series_

some trend removal or filtering process is necessary.

2.3.1 Methods of Trend Removal

Different methods have been proposed for trend removal, the
selection of an appropriate one depends largely on the practical sit-
uations. For small samples,. plotting is the best way to compare the
filtering effects upon the unfiltered time series. For samples with
a large number of data points, calculation time becomes one of the
essential factors to make the selection.

Dyer [25] suggested a modified difference filter applied to the
meteorological data. However, the calculation of every auto-correlation
coefficient between two neighboring values does not seem to be eco-
nomical for the large volume of data encountered. Houbolt [47] pro-
posed a high pass filter based on the idea of a symmetrical exponantial
filter. The requirement of making two passes in the calculation re-
quires almost twice the computer time, which makes this method impractical.

It is generally known that the best way of estimating a trend is
to use a polynomial of low order by the least square method, yet this
method does not represént the trend satisfactorily. As a resuit, one

frequently makes use of the method of moving average based on the
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jdea that although a low-order polynomial, say a cubic polynomial, may
not approﬁimate the trend very satisfactory over the whole time intervai

it may fit well over shorter intervals.

2.3.2 High Pass Filter

The high-pass filter appiied to our data samples is obtained by
first constructing the frequency response function of the equaily-
weighted moving-average low-pass filter which is the Fourier transform
of the equally-weighted time function. The filter shape of the high-
pass filter is obtained by squaring the frequency response function
of the low-pass filter and then subtracted from unity. This particular

high-pass filter is called the moving-average and differencing high-

pass ffiter.

2.3.2.1 Weighting Function

Digital filtering is simply a process by which a set of input data

Ag is transformed into a set of output data Ag by means of a Tinear

expression
%_
G _ I (2.3.1)
7

where wk are the suitably chosen weights and T is called the filter-

ing interval. FEq. (2.3.1) can be regarded as the numerical approxima-

tion of

A%(t) = w(t) Al(t - ) de (2.3.2)

-C0
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which states that the convolution of W(t) and AI(t) produces A%(t).

The term dt is usually absorbed in the following form

0 _ I I Fooyal
Ay = ”;r,"t%" v FHp Apg A WAy e
I

I .

+ We A
T7,T 2.3.3
5ty | ( )

where T must be an even integer.

The weight wo, which is multiplied by the observation Ai, is

termed the central principal weight. It is seen that the greatest
weight is placed on the most recent observation while both past and
future observations receive symmetrically diminishing weights. In
choosing ah equally-weighted moving average filter, the weights selected
are all equal to %3 where T is the number of observations used in
computing the mean or the filtering interval as described in Eq. (2.3.1).

Therefore, the analytical form of the weighting function W(t) may be

expressed by

1 T
» tl <5
W) =4 1 ‘% (2.3.4)

It is seen that the weighting function W(t) is applied to the
observations from - %-to %-so it is an even function of t. The fre-

quency response of the filter, H(f), is obtained from the Fourier
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transformation of the weighting function W(t) by

oo

H(F) = I W(t) e ~Temfty, (2.3.5)

or because of symmetry

o0

H(f) = 2 Jo W(t) cos(2nft) dt. (2.3.6)

For a finite filtering interval T, Eq. (2.3.6) may be written as

T/2

H(f) = 2 I W(t) cos(2nft) dt. (2.3.7)
0

Substituting Eq. (2.3.4) into the Eq. (2.3.7), the frequency

response function of the moving average filter may be written as

H(f) = Sft | (2.3.8)

which has a value of unity at f=0. This frequency response function
is calculated from the equally-weighted moving average time-function.
To obtain a high pass filter, it is necessary to subtract the moving
average value from the original data.

The filtered data set for a moving average and differencing filter

may be obtained by the following expression



28

T
Z
0 _ ,l 1 I .y T T
Ap = A - 1_ET Apip t=gr g2, Loz (2.3.9)
'z

where AE is the filtered value at time t, Ai is the original input
value, T is the filtering interval and L is the total number of data
points equal to twice the filtering interval. 1In this data processing
system, T is the total number of the data in one block (i.e. 8192)
while L = 16384,

2.3.2.2 Filter Shape for Moving-Average and Differencing High Pass

Filter
The filter shape for the moving-average and differencing high-

pass filter is obtained from Eq. (2.3.8) by subtracting from unity

I(f) =1 - (S‘m”ct) (2.3.10)

which is shown in Fig. 5.

The moving average and'differencing filter obviously has the draw-
back of failing to provide the trend vafues for the first half in the
first block of fhe sample and for the Tast half in the last block of
the sample. It is not a great loss to have to forego the initial
data values at the beginnfng of the first block, but the absence of
trend values at the end of the last block is a serious handicap if we

want to ektrapolate into the future for forecasting.
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2.4 'Coordinate Transformation

Four new, mean-removed time series a;, i=1....4 have been created
after having applied phe moving-average and differencing high pass
filter to the original raw observations. When i = 1,2 or 3, 3, repre-
sents the fluctuating velocity components in the sensor oriented co-
ordinate system, and when i = 4, a, denotes the fluctuating temperature.

The sample probe yaw angle as calculated in Eq. (2.1.12) will be
used in the calculation of coordinate transformation of the values of
sample means, sample variances and covariances from the TSI or sensor
oriented coordinate system to the mean wind direction xyz. The x-
direction is the intersection of the vertical plane, which includes
the total wind vector, with the horizontal plane. The y-direction is
in the horizontal plane perpendicular to the x-direction and z-direc-

tion is vertically upward.

2.4.1 Variance and Covariance in each Block

The filtered time series should have a near zero mean value,

so variances and covariances in the blocked subseries m, m = 1,2,...

3

M-1 can be calculated by using the following definition

-m o
‘aiaj

5 jemd
o=

a,{k) a.(k), i,j =1,..4 (2.4.1)

k=1 " J

where a5 i=1,..,4 represents the filtered time series. Equal subs-
cripts 1 = J in the above equation represent the variances while unequal

subscripts 1 # j denote the covariances. The total number of blocks
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have decreased by one due to the application of moving-average and diff-
erencing high-pass filter. |
In order to correct the values of the block variances and co-
variances of the time series, the filtered time series for each block
should have eXact1y Zzero mean value. In this case, the following
reIétionship should be used
———

1
a,a. = —
n

n
i E

- -m e
O ai(k) aj(k) CHEF BRI P 1,2,...,4 (2.4.2)

where the block mean value of the filtered time series is calculated by
a,(k) , i=1,2,...4 (2.4.3)

and m denotes the block number.
Covariances of two time series measures the covariation between
the related time series. The covariancelw111 have zero value if the

two time series are not related.

2.4.2 Sample Mean Values

The values of the sample means for the four time series have
been calculated previously in Eq. (2.1.11) by using the unfiltered
observations. The sample variances and covariances are calculated from
the filtered series ays i=1,2,...,4 by using arithmetic averége
of each blocked values as follows

M-1

‘ T — _
ai_aj ol e mE‘I a‘iaj o T3i=1,..,4 (2.4.4)
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where superscripts m = 1,.., M-1 denotes the number of blocks to be
averaged. |
The sample variances and covariances for the filtered time series
as, i=1,..,4 with exactly zero mean value are calculated from
‘ ; ] M-1

= -—-—m* 2 -=
aiaj T mET aiaj . i,j=1,2,..4. (2.4.5)

2.4.3 Mean Wind Direction Transformations

The statistical quantities of interest should be expressed in the
mean wind direction, therefore transformation of all the values of
sampie mean, sample variances and covariances are to be performed from
the sensor oriented coordinate system to the mean wind coordinate
system. Since the covariances between fluctuating temperature and
three fluctuating velocity components are also important, a new trans-
formation 4 x 4 matrix is obtained by combining the relations in Egs.

(2.1.4) and (2.1.6) as follows

Elp E;p B3 0

Eyy Egp Epz O .
21 |
By - 2z 23 (2.4.6)
Eg Egp Ea3 O -

31 E3 Ey3

\

where E11 = 0,57735 cosB

m
I

= 0.57736 sing
-0.8165

12

13
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m
1

97 = 0.57735 cosg - 0.70711 sing
oo = 0.57735 sing + 0.70711 cosg
E,g = 0.40824

m
1

m
|

Eqyp = 0.57735 sing - 0.70711 cosg

- 0.40824
The values of mean velocity components and temperature, variances
and covariances in the mean wind direction can be obtained by the

following transformations

U; = Eki Ak s i=1,...4 (2.4.7)

and

uiuj = EkiE&j Qdy s i,=1,...,4 (2.4.8)

where the first three subscripts represent the thfee velocity com-
ponents in the mean wind direction and the Tast subscript represents
the temperature. The variance of temperature fluctuations in the
sensor oriented coordinate system should be invariant under the

coordinate transformations since temperature is a scalar quantity.



CHAPTER ITI
SPECTRAL ANALYSIS

The estimates of spectral density functions and other spectral
characteristics associated with stationary multiple time series are
considered necessary in order to study the physical properties of the
phenomenon in terms of its behavior in the frequency domain. The
power spectrum shows how the variance or average power of the time
series is distributed over the entire freguency range. The cross-
spectrum describes the relationship between two time series in the
frequency domain through determining the coherence function. Since
the cross-spectral density function is a complex function, it can
be expressed in terms of a real part (co-spectral density function)

and an imaginary part (quadrature spectral density function).

3.1 Methods of Analysis

In general, three different methods may be used to compute the
power and the cross spectfa] densities. Each of the three methods is
based on a different but asymptotically equivalent approach. These
methods are |
a. the indirect or Blackman-Tukey method which takes the Fourier

transform of the auto- or cross-correlation functions of the time
series to obtain the required spectral density functions.

b. the direct or fast Fourier transform method calculates a quantity

33
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which is the direct Fourier transform of the time series. This
quantity is then squared to obtain the spectral density functions.

c. the filtering method can be used either on a digital or analog
computer to obtain these spectral density functions.

These three methods should turn out comparable results but these
results are not necessarily identical, even if the same effective
bandwidth at a given frequency is used. The three methods are suitable
for computations of spectral density estimates, but they possess similar

problems related to bandwidth, leakage, and statistical variability.

3.1.1 Indirect or Blackman-Tukey Method

This method requires the computation of the auto and the cross
correlation functions before taking their Fourier transforms to obtain
the spectral density functions. If the sampled abservations {aj} and
{by} i = 1,2,...,n come from two discrete time series with zero means,
then auto- and cross-correlation functions can be calculated

respectively as follows

1 n-k
Caalk) = H‘tf1 ap Appys k >0 (3.1.1)
and
-| n"k
Cab(k) = E't51 a bt+k k>0. (3.1.2)
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The power spectral density function of the discrete time series
'{aj} , 3=1.2,...,n is estimated by

. L-1 |
Ga(f] = 2At {caa(o) +2 I Caa(k)W(k)COSZTrkat},

0<f<mr (3.1.3)

where W(k) is the lag window with truncation point L. The selection
of an optimum lag window and best truncation point is usually done by
trial and error procedures.

The cross spectral density function for a stationary bivariate
time series‘{aj} and'{bj} s J=142,...,n consists of a real part of the
cross spectral density function called cospectrum and an imaginary part
of the cross-spectral density function called quadrature spectrum.

Respective estimates of these spectra can be calculated as follows

L-1 !
r:oab(f) = Z2At {ﬂab(O) + 2 51 £ab(k)w(k) cos2nfkat}
0<f< J_ {3.1.4)
- 2 2At s

and

L-1
Qp(f) = 4at T q_ (k)w(k)sin 2nfkat,

0<fipme (3.1.5)
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where 2,4(k) is the even part of the cross correlation function Cyp(k).

That is

tab(k) = 2{Cap(k) + Cap(-K)), (3.1.6)

and qab(k) is the odd part of the cross correlation function, namely

Gab(k) = 3 (Cap(K) = Capl=k)). (3.1.7)

The cospectrum describes the in-phase relationship of the two
time series, while the quadrature spectrum depicts the out-of-phase
relationship. The quadrature spectrum assumes zero value if the cross
correlation function is even. The occurrence of a maximum correlation
between the two times series {aj} and {bj}, at a non-zero lag will
produce an odd function for Cyp(k).

The calculations of auto- and cross-correlations in equations
3.7.1 and 3.1.2 involve a computational loop which is mainly a
multiply-add operation, requiring execution time in modern high-speed
digital computers of the order of seconds for just one single value
for the time lag. In many physical applications, the number of time
series to be analyzed can run into a fairly large number. Because of
the time constraint, it is almost impossibie to use this method to
handle experimental records which run for half an hour and have a sample
rate of 200 samples per second. As a result, alternative methods
should be used for.the spectral calculations of time series representing

the ground level atmospheric turbulence.
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3.1.2 Direct or Fast Fourier Transform Method

Instead of calculating the correlation functions, this method uses
the Fourier transformation of the discrete time series {as}, § =

1,2,...,n directly. First one has to obtain the following quantity

e = at 1 age 12T/

W(j), f=0,1,...,n-1, (3.1.8)
MPN |

J=1
where W(j) is the data window. Hence the power spectral estimate is

obtained as follows

~ Z *
Ga(f) = 757 He He (3.1.9)

where H; is the complex conjugate of H¢. Equation (3.1.9) may also be

written as
G, (F) = =55 [Hel© s f=o,1,2...,g-+1. (3.1.10)
The introduction of the fast Fourier transform method makes the
direct method extremely attractive in spectral density calculations.
The detailed description of the application of the direct method in
estimating power and cross spectral density functions is discussed in

section 3.6.

3.1.3 Bandwidth Filtering Method

For a specific frequency index k, it is necessary to assign

frequencies {f,} and bandwidth {Bx} as follows
0<f0<f1<..o<fk5_‘2‘ﬁ'

where At is the sampling interval. The bandwidth {By} of a narrow band-
pass filter may be described in three different ways, namely, the

half-power point bandwidth, the noise bandwidth9 or the equivalent



38

statistical bandwidth. For the half-power point bandwidth'{Bk} used

in this section, it is the frequency fnterval between the upper and
lower frequencies where the filter attenuates an applied signal by 3 db
below maximum transmissibility [6].

A separate bandpass. filter, such as Chebyshev sine bandpass
filter or Butterworth sine bandpass filter [67], is designed for each
k. The filters have their half-power points at (fk - ;EJ and
(fk + ;EJ hertz. More specifically, the distance between the two half-
power points is set to be Bk hertz and fk is located midway between them.

Let the output of the kth filter be denoted by q(§), i=1,2,...,n
which is filtered by using each of the filter k, then

Q§k) =

>

n ;
] h(g) afk) ] g§k) ap (3.1.1)
j=1

Jj
where hj and gj for j=1,2,...,& are the chosen filtering functions with
total number of £ weights. In practical numerical computations, it is
noted that some input values a_s and output values q_; are necessarily
set to zero initially. The power spectral density function is obtained
by

] n

k)q2
S [{7% (3.1.12)

which means that the data are passed through a bandpass filter, squared,

summed and finally normalized with the proper units.
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3.2 Sampling Considerations for Random Data

For the purpose of statistical analysis, most continuous sample
records should be read at some fixed interval At and converted into
digitized records for numerical calculations. Sampling defines the
points at which the data are to be observed. Corresponding relation-
ships exist between a random time sample record a(t) defined for the
time interval from 0 to T seconds and its Fourier transform G(f) de-
fined over a range of frequencies from O to F. However, both sample
records a(t) and its Fourier transform G(f) are restricted by their
respective time and frequency properties. Proper considerations should,
therefore, be given to these problems in order to obtain better estimates

of the spectral density functions.

3.2.1 Resolution Difficulties

Resolution is defined as the degree to thch the true spectrum
shows its narrow and tall peaks. Time and frequency afe related inversely
as can be seen from their physical units. The actual record lengths
are finite instead of infinite ‘in extent and the frequency bandwidth
Af is also of finite width instead of near zero width. Due to this
resolution problem, additional errors will be encountered in the estimates
of the spectral density function. |

For a fixed record time T, the estimate of the power spectral density
function might be improved by taking the frequency bandwidth Af by the

following relationship

TAfF>C (3.2.1)
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where C is a fixed constant. For a fixed record time T, values of

Af which are too small will violate this uncertainty principle.

One should attempt to increase T and at the same time decrease Af
without corresponding increase in record length T will reduce the
statistical reliability of the spectral density estimates. A decrease
in bandwidth Af will improve the resolution but has to trade for
statistical reliability. A compromise between a reasonable bandwidth

and statistical reliability is, therefore, necessary.

3.2.2 Aljasing Errors

The question of the "aliasing" error arises as a result of
sampling the data a(t) at equal intervals of time At and later confusing
some of the higher frequency contents in the original frequency space
with the Tower frequencies as can be seen in Fig. 6. The aliasing can
easily be avoided electronically in the experimental system by filtering
the signal before sampling so that the power ébove the maximum fre-
quency fg is effectively removed. 1In digital data computations, care
must be taken to avoid the occurrence of aliasing.

If a data sample a{t) is sampled at equal intervals of time by

1
At = g?; (3.2.4)

then f¢, which is called Nyqujst frequency, is the highest frequency at
which spectral data can be attained without introducing aljasing
errors. Any frequencies present in the data which are integer multiples
of Nyquist frequency f; cannot be distinguished from fs. For the

frequency f = nf; and at = ?%_‘ it is seen that
- s
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sin2nfat = sinZn(nfS)(E%rs—) = 0, for all n=1,2,... .  (3.2.5)

Similarly, the energy at an arbitrary frequency f cannot be

separated from energies contributed by different frequéncies such as

-
-+
i+

nfg, : (3.2.6)
and

siné2nfat = sinZ2n(f + nfs)(i%—J, for all n=1,2,... . (3.2.7)
s

Thus, if frequencies higher than the Nyquist frequency fe are
actually presented in the data, they will contribute their energies
to lower frequencies with consequent errors in power spectral density
estimates at these lower freguencies.

To avoid this aliasing problem, one should choose the sampling

frequency fg and sampling rate At in such a way that

I N |
At = 7 2 Ty

, (3.2.7)

where fo.. is the maximum frequency for which the data will be

analyzed. It may also be written as

fs 2 fnax - _ - (3.2.8)

It is, therefore, concluded that the time interval between
successive samples should be such‘that the sampled data contain at
least two samples per cycle of the highest frequency of interest. In

case extraneous noise is present in the data samples, ten to twenty
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samples per cycle of this higheét frequency are considered practical
unless the high frequency noise can be filtered off before the data
are sampled.

The effect of aliasing on the integral Fourier transform of a

function a(t) can be shown as follows

oo

-3 t
6(F) = | al(t)e 0" tat (3.2.9)
where i = V-1 and its inverse Fourier transform is
a(t) = | a(f)e'?ftys (3.2.10)

oo

The effect of sampling at finite intervals, evaluated at the

points t; = jat, j =0, +1,+2, ... and F = l—-can be seen as

j AT
fb110ws
w K+1)F
i2nfj - ( | ) i2nfj
a(ty) = G{fle T df = £ | G(f)e T df. (3.2.11)
K=o
-0 KF

The exponential function in the integrand of Eq. (3.2.11) is a
periodic function of frequency f in the region from f = 0 to f = F,
s0 it may be written as

-i2nif
a(jat) = 6,(f)e Foaf (3.2.12)
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where Gp(f) is the spectral density function with periodic function

f such that

Gp(f) = §  G(f + Kf) . {3.2.13)

The Gp(f) is different from the spectral density function G(f)
defined in Eq. (3.2.9) because Gp(f) is the sum of the G(f)'s dis-
placed by all multipies of F. This error is referred aliso as

"aliasing”" in the frequency domain.

3.3 Tapering Function - Time Domain

The selection of a tapering function is in many respects analogous
to an engineering design of an electrical filter. Tapering is to
multiply the time series by a data window, analogous to multiplying
the correiation by a lag window in the indirect or Blackman-Tukey
method. The method of using various lag windows to obtain smoothed
spectral estimates have already been well established [77]. The
problem of tapering the time series has not been thoroughly studied
although different data window functions have been proposed [105].

By addpting the direct or FFT method for spectral estimation,
emphasis will be placed on the use of data windows or tapering
functions. The purpose of using a tapering function is to provide a
slightly wider spectral window than would be obtained if a straight-
forward harmonic analysis is used. From the time domain viewpoint,
tapering is to round off potential discontinuities at each end of the

time series. In the frequency domain, tapering is to suppress large
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negative side lobes in the power sﬁectrum. In general, tapering will
change the mean and variances of the data sample since unequal weights
are given to different portions of the time series. In effect, some
data are lost and as a result degrees of freedom are Tost. A scale
factor is therefore necessary to compensate this difference in order

to obtain the accurate spectral estimates.’

3.3.1 Cosine Taper Data Window

It is essential that the mean is removed from the data before the
data window function is applied. Bingham et. al. [9] proposed a data
smoothing function consisting of a short left-half cosine bell, a
long constant and a short right-half cosine bell. Latgr they proposed
a data window to taper both ends of the time series with the cosine
bell each of which contains one tenth the time of the total sampie
time. The data between these cosine bells are multiplied by unity.
This data window is called cosine taper data window and may be expres-

sed in the following form

W= () (- cosgp)  0<t<odr )
Wy =1 0T <t < 0.9T
I T-t | F(3.3.7)
W= () (1 - cos XUty ggr et o7 |
(or 0 < T-t < 0.17 )

where T is the total sample time. The corresponding smoothed filter

shape Cr(f) which can be used in conjunction with FFT, is shown in
z

Fig. 8. This function is the Fourier transform of the data window

Wt as is shown in Fig. 7. The Cy1(f) has a wider main lobe with
?‘ .
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suppressed side lobes so as to reduce any possible power leakage and
to prevent negative power estimates.
The general form of the cosine-taper data window of Egq. (3.3.7)

may be written ag

e = 3 (1 - cos 1978 | (3.3.2)
or ozt _10ut

Wy = % -+ [Me s N
or 10nt 20nt  10mt

We = [F+1e T - e Tle T (3.3.3)

From the numerical coefficients inside the bracket of the above
equation, it is seen that the cosine-bell data window is simply an
extension of the Hanning weighting function with coefficients

(%a %a %J for frequency domain smoothing.

3.3.2 Other Data Windows

There are few other proposed data windows [105] but they have not
received wide attention. Their application in any practical problem
has not been attempted. In applying these windows to the atmospheric
turbulence data, the results predicfed are generally lower in value
as compared to those using cosine-taper data window which was discussed
in the previous section. A brief discussion of these windows is

presented in the following section.
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3.3.2.1 Window No. 1

Welsh [105] proposed a data window which is expressed by the fol-

Towing function

wi(t) =1 - T | et =0,1,2,...,0-1. (3.3.5)

The resulting spectral window corresponding to the data window

(3.3.5) is given approximately by

. 2
Wy (F) = (2 (It e _ o (a1 )nf ]y (3.3.6)
' w2(nt1)F2 T (n#1)nf
where
1 n-1 2
U= oz ow (t) (3.3.7)
t=0

and n is the total number of data points used in the computation and
can be considered as a scale factor. To change n will mean a variation
of the shape of the spectral window, Wy(f), by expansion or compression
of the extent of the independent variable f.

The half-power width is given by

—

_1.16

Mf = e . (3.3.8)
When the same half-power width is used for comparison, the spectral
window, Wy (f) turns to be almost identical to the spectral.window as

proposed by Hanning [10].
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3.3.3.2 MWindow No. 2

Welsh [105] also proposed another data window but it has a
different shape as compared to window No. 1.

n=1

t- 5

wo(t) =1 ~ i ] t = 0,1,2,111,n-1 . (3.3.9)
2

The resultant spectral window Wo(f) is again obtained by applying

Fourier transform to the data window wg(t)‘and can be expressed as

follows
2
. f
n+l sin?{(n+1)3-}
wy(F) = 2—] (3.3.10)
nJ 2 {(n+1)%f}2 J
where
1" F ) (3.3.11)
U' ==z w, (t) . 3.3.11
N tag 2

Changing the total length of the data set will again result in
the change of the shape of the spectral window function Wo(f) by
- expansion or compression of the extent of the independent variable f.

The half-power width is found to be

_1.28 {3.3.12)
bof = a1
When this half-power width is used to compare the shapes of the spectral
windows , wz(f) is found to be very close to Parzen's spectral window

[51], which possesses Tlarge negative side lobes. The presence of
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negative side lobes in the spectral window function has Qreat dis-
advantages since prediction of negative power spectral density function

may occur.

3.4 Smoothing Function - Frequency Domajn

The smoothing of the spectral estimates in the frequency domain
may be achieved by either averaging the estimates at the corresponding
frequency points of segmented subseries in a time series (segment
averaging) or averaging the spectral estimates among neighboring points
in the spectrum function (frequency smoothing). The combination of
both segment averaging and frequency smoothing may be applied to obtain
a smooth spectral estimate. This type of smoothing'is referred to as
combined averaging.

A plot of the individual power estimates versus frequency for a
one half hour sample will be next to impossible. Even the plotting
of spectrum functions which are smoothed using the segment averaging
method will show many small individual peaks. These small peaks and
valleys are insignificant in the explanét?on of the turbulence
structure, because they may represent sampling fluctuations rather
than any systematic physical variations. Frequency smoothing may
average out these peaks in order to obtain a more useful representation
of the spectrum but has limitations as far as the resolution is con-
cerned. However, for a long time series covering nearly four decades
on the ffequency scale, the resolution is generally two or more orders

of magnitude greater than actually required [69].
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3.4.1 Segment Averaging

The data sample of one half hour duration has been previously
blocked into M different subseries each of which has n data points.
The total number of blocks has been reduced by one as a result of
applying the moving-average and differencing high-pass filter. By
using the fast Fourier transformation technique, there will be M-1
number of blocked spectral estimates each of them of length n. The
M-1 spectra1 estimates are averaged over corresponding frequencies
to obtain a smoothed spectral estimate given by

M-1
G(Fy) = 1o 1 G(fy) 1=1,2,...n . (3.4.1)
K=1

M-1
The application of segment-average smoothing will increase the
effective resolution bandwidth Bo depending on the number of blocks

to be averaged. The spectral window before applying the segment

averaging was triangular in shape with Be = %—. After applying the
segment averaging, the spectral window is still triangular in shape
except thereffective resolution bandwidth Bg will be wider (i.e. Bg =
M%l) as shown in Fig. 9. The spectral estimate G(fj) in Eq. (3.4.1)
may be considered as representing the midpoint of the freguency inter-

val covered by Bs. A total of n spectral estimates can be obtained.

3.4.2 Freguency Smoothing
After averaging the 2 neighboring spectral estimates of the power
spectrum, .the new spectral function can be expressed in terms of the

original one as follows

3
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~ E’ )
6(fe) = 1 3 6(F)  K=1,2,...
=1

YE

where ¢ is the number of neighboring freguency components to be aver-
aged and n is the total number of original spectral estimates. The
spectral window before frequency smoothing was triangular in shape with
the effective resolution bandwidth B = %—. After fregquency smoothing,
the spectral window will be trapezoidal in shape with much wider ef-
fective resolution bandwidth (i.e. Bg = %ﬁ as shown in Fig. 10. The
spectral estimate may be considered as representing the midpoint of the

frequency interval from fy to fgeg.), where K denotes interval number.

3.4.3 Combined Averaging

The smoothing of spectral estimates can be achieved more effective-
ly by first applying segment averaging followed by frequency smoothing
which is known as combined averaging. As a result of applying the
combined averaging technique for smoothing of the spectral density esti-
mates, the final effect{ve resolution bandwidth becomes much wider and
can be approximated by |

Be = T (3.4.3)
where M is the number of blocks to be averaged and 2 is the number of
averaged spectral estimates and T is the total sample time. The number
of degrees of freedom vy is

v = 2BoT = 2Mg, (3.4.4)
which can be interpreted as the totaf number of real and imaginary
components within the bandwidth, B;. Since each of the spectral esti-

mates is in itself a Gaussian random variable, the squaring and
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adding of them will produce a Chi-square distribution. The broader
effective resolution bandwidth gives the reduced normalized standard

error which will be explained in the next chapter.

3.4.3 Proposed Frequency Smoothing Technigue

The frequency smoothing is usually done by choosing an equal
number of neighboring frequency components of the spectral estimates
to be averaged. This technique is effective only if the power spectral
density estimates are distributed evenly throughout the whole frequency
range of interest. If the power spectral density estimates are con-
centrated either in the Tow or in the high frequency range, a new
frequency smdothing technique is proposed in order that more informa-
tion is to be obiained in the range of interest.

In order to obtain more spectral information in the lowest
frequency range of the atmospheric turbulence spectrum, it is proposed
that the total number of spectral estimates after segment averaging
be separated into different averaging regions.

Since the power spectral estimate at zero frequency is of no
significance for reliable analysis, the smoothing starts with the
second value of the spectral estimates after zero fréquency.

The pdwer spectral density estimates at the Towest frequency
range have been obtained by pn]y going through segment averaging
(i.e. £ =1, n=281in Eq. (3.4.2)). The average value % used in the
frequency smoothing method is chosen in a manner of geometric progres-
sion (1.e. ¢ = 20.22,24,....). For different values of 2 different

spectral estimates will be obtained as expressed by the following



52

L =1,
~ )
6(f) =L = 6g(f)  k=1,2,....8, (3.4.5)
i=1
L= 4,
~ 1 £
G(fx) = 7 £ G&(f)  k=9,10,...,38, (3.4.6)
i=1
% =16,
- 1 2
G(fy) =y = G§{f)  k=139,40,...,62 , (3.4.7)
i=] \
7 = 64,
~ 1 2
G(fy) =7 = 64(f)  k=63,64,....86 , (3.4.8)
i=1
and ¢ = 256,
~ .l 2
G(fy) = 3 = G;(f)  k=87,88,...,94 . (3.4.9)
: =1

In this case, 4097 unique values of spectral density estimates G;(fy)
have been used to obtain 94 final smoothed spectral density estimates
é(fk). The overall filter spacing for this proposed frequency smoothing

technique is shown in Figure 11.

3.5 Fast Fourier Transform

The fast Fourier transform (FFT) is an efficient and time saving
algorithm for the computation of the harmonic amplitudes in the
freguency domain from uniformly spaced input data points. It is used

to analyse the periodic phenomena of a time series as it converts to
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a frequency function. The time savings of this algorithm will permit
the reduction of operations by a factor of N2/N logo N if the number
of data points in the sample is a power of two.

Many widely used FFT algorithms involved bit-reversal procedures
to sort the Fourier coefficients into the proper order in the final
stages of the transformation. The bit-reversal procedures can also
be avoided if the input data have been sorted into different orders
so the output coefficients will be in the proper order.

Uhrich [99] developed a Fortran program without requiring bit-
reversal procedures but lacked a supporting theory. His algorithm
requires a 2xN array for variable storage in the computer rather than
a 1xN storage for bit-reversal sorting. The required computation time,
therefore, is almost twice as long as is necessary.

A different algorithm for FFT calculations without bit-reversal
and sorting procedures together with comp?efe mathematical formu-

lations will be presented in the following sections.

3.5.1 Properties of Fourier Transform

In order to understand the fantastic time savings involved in
FFT computations, some basic properties of the Fourier transformation
need to be explained. In processing digitized signals or samples,
the attention will be focused on the properties of the discrete finite
Fourier transform (DFFT). Some useful properties related to the
development of the fast Fourier transform will also be discussed.
Property 1: The Fourier transform transfers the N data points of

the time series (ao,a],az,...,aN_1) to the N-spectral values
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(H,sHy3Hy 5. .- 5Hy 1) in the frequency domain, as defined by
0* 2 N-1

Ha(f) = £ ap(t) W™ r=0,1,2,...,N-1 (3.5.1)
0

where W = e . A very similar equation defining the inverse finite
Fourier transform, which transforms the discrete spectral values back
to the original discrete time series can be written as

N-1

an(t) =& = KA W = 0,1,2,0,80 . (3.5.2)

z
r=0
In case the digitally recorded data points ao,a],...,aN_] are
finite but non-periodic (random), the sample values as defined by Eq.

(3.5.2) can be proven to be periodic and infinite as follows

N-1
] -r{n+
anan(t) = = He(f) W r{n+N)
r=0
or
1 N-1 -rn , N7
an(t) = N 20 Ho(f) W (W) (3.5.3)
r:

where W is the N®M oot of 1 or W = 1, so (W)™ = 1 and it follows
that
N-1

D W (R W = a(t) (3.5.4)

]
anan(t) = %
n+i N =0

Similarly one can prove that H.,.y(f) = H.(f).
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Property 2: If the time series (ao,al,...,aN_]) is real, then

the second part of its finite Fourier transform is equal to the

complex conjugate of the first part. The spectral values HO,H],...,

Hy_1 can be separated into two parts
HysHysHsse o0 5H Hys H H N
0>71>722 27N ¢ "N* N 1N, 2 N-]

L— 2’ L
L g —

First Part Second Part

It is necessary to prove that

*
hn-3(f) = Hj(f) for 0 < j < N-1,

where the star superscript refers to the complex conjugate.

(3.5.1), one can write

N-1

HN_j(f) = an(t) H(N_j)n .

b
n=0

Using the property 1, Egq. (3.5.6) reduces to

N-1 .
Hy_s(F) = £ an(t) wih .
N-j =0 n
Now,
o R 1
W cos%ﬂhi siﬁ%ﬂ
or
-1

L=
]

cosﬁﬂ-+ i sing1 = N* .

{3.5.5)

From Eq.

(3.5.6)

(3.5.7)

(3.5.8)

(3.5.9)
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Hence Eq. (3.5.6) can be written as

N-1 =
HN_j(f) = Iz
n=

] *
a, () (W™ . (3.5.10)
0
For a real valued time series, ap(t) = a;(t) and Eq. (3.5.10) can be

written as
N‘1 J-n * *
HN_j(f) = | 3 an(t) W = H (f) . (3.5.11)
7 nzo i J

Property 3: The atmospheric turbulence data are always a sequence
of real numbers. By app]ying‘Fourier transformation we usually store
the actual (real) input in the real-part array of the computer and
zeros in the imaginary-part array of the computer. Thjs requires
storage length of 2N and produces 2N components of N complex Fourier
coefficients. In fact, we used only N Fourier coefficients which
should take much less storage in the computer. By forming a cémp]ex
time series (EO,E],...,EN_1) from two veal input time series
(8gsays-«-»dy_q) and (By.bys....by.1), one can perform Fourier trans-
formation utilizing complex input in a form of Er =.5r + i Br for
r=0,1,2,...,8-1 and i = /~T . Then the combined spectral series

will be in the form of

-~

Cr = An + 1 Bp 0,1,2,...,8-T  (3.5.12)

-
{]

where ﬁr and ér are both complex. Let
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~ -

Arza-l +152r

r

and , (3.5.13)

r

where ;1 ,;2 ,51 » and 52 are real numbers.
r “r 'r r

By using property 2, one can write

~

~% ~%
Cy-p = A, + 1 B, {3.5.14)
~% ~% ~ -~
where A, and B, are complex conjugate of A, and By respectively.
Both Egs. {3.5.12) and (3.5.34) can be written in form of
Cp={ay +iap)+1i(by +ib
r={ay +az) (by +1bg)

and

—~

C-r = (a1 - T 2 ) + 1 (by - 1bp)
Hence it follows that
Cr=1{a; -b,)+1 (3, +by) (3.5.15)
r ]r 2r 2r }r

and

~ ~ -~

CN-r = (g + by ) + 4 (3, - by ) (3.5.16)
By combining Eqs. (3.5.15) and (3.5.16) one obtains

*
Cr + Cy. - - -
-L._.E._M= a.l + 3 azr = AY‘ (3517)
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Lo by 1 by, = By (3.5.18)

where A, and Bp, for r = 0,1,2,...,N-1 are the Fourier transform
values of the two real time series 5n and En respectively. Both Egs.
(3.5.17) and (3.5.18) can be written in more easily perceptive forms

as follows

Co{F) + Cyop(F)) C.(f) - Cy_ ()
f\r(f)=Re[( () r }Hm{( )~ ey }

(3.5.19)

and

G, = Im [(Cr(f) ; CN-r(f))} i Re [(Cr(f) ; CN'T(f))l.

(3.5.20)

There are many other properties (j.e. circular convolution of
two time series) which may be found in most of the standard textbooks

on Fourier transformation.

3.5.2 Basic Theory of Fast Fourier Transform (FFT)

The basic theory of FFT was developed by Cooley and Tukey [19] in
a subtle way so that it was somewhat difficult to understand. The
main idea involved in the entire development was to continuously
reduce a time series into two final point functions. It may also be
il1lustrated by the principle of matrix factorization [34]. The theory
presented here is to illustrate in a simple mathematical form the

reasons for the time-saving capacities of this algorithm.
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In the sampled-data case, the discrete Fourier transform (DFT)
is defined previously by
N-1

H. = £ ape
k=0 k

-i2nkr/N r=0,1.2,...,N-1 (3.5.21)

where Hp is the rth coefficient of the DFT and ag denotes the kth
sample of the time series which consists of N samples and i = /~T.
The definition of DFT is not consistent throughout the Titerature.
Some authors prefer to use Hp/N as DFT coefficients, others use
Hp/¥N. Therefore, care should be exercised in doing the numerical
computations. The ayg's in expression 3.5.21 can be either real or
complex but the Hp's are almost always complex. Egq. (3.5.21) may be
written in a simplified form

N-1

He= 1 g P=0,1,2,... N1 (3.5.22)
k=0

where WK = @=120k/N oy = o=127/N

3.5.2.1 Illustrated Example

To become move familiar with the discrete fast Fourier transfor-
mation as defined in Eq. (3.5.22), an example will be used to describe
this technique for 8 data points. For a random digitized time series
ag» k = 0,1,2,...,7 the Fourier transform of Eq. (3.5.22) may be

written as follows



60

Hy=ay+ta t+tap +ag + 54 +ag tag +ay

Hy = ag + afl + agW® + aqwd + ag? + ag® + aghb + agw’

Hp = ag + ajh2 + ag + agWb + agW + agh + agh? + ayWb

Hy = ag + a1W3 + ag6 + agW! + agW? + agh’ + agh? + ajW®

Hg = ag+aWt +ap +agw +ag +agwt+ag +agwt (3.5.23)
Hg = ag + a1w5 + a2w2 + a3w7 + a4w4 + a5kft + a6w6 + a7w3

Hg = ag + a1w6 + a2w4 + a3w2 +ag + a5w6 + a5w4 + a7w2

Hy = ap + a1w7 + a2w6 +<a3w5 + a4w4 + a5w3 + a5w2 + ayw]

where use has been made of the relations W0 = 1, w8+“ = W and W = -1.
It is clear that the complete calculations of Eq. (3.5.23) requires 64
complex multiplications and additions. Samples which consist of
thousands of data points would require an extremely large number of
computer computations and also require a 1afge storage. But from Eq.
(3.5.23) some basic characteristics of the Fourier transform may be
recognized. Obviously, symmetry in the right hand side of these
expressions can be observed. The first equation in (3.5.23) is simply
the sum of all the data points.

The FFT method js essentially to divide the total number of data
points in half which gives two sequences and then dividing these
sequences in half again to give four short sequences each consisting
of two terms. It will be shown that the shorter sequences require
fewer operations than the longer sequences. It is profitable to
separate the original data points into two shorter sequences b,

L= 0,1,2,...,g-composed of only the even-numbered data points, and
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Con & = 0,1,2,...,g'composed of 0n1y the odd-numbered samples. Now
the discrete Fourier transform of the shorter sequences for the 8-data

points sample is given by

3
Bp= 2 bk r=0,1,2,3
k=0
and (3.5.24)
3 vk
Cp= I oW r=20,1,2,3,
k=0

where W2 = cos(%l) - i sin(%l). The computing time for obtaining the
Fourier coefficients By and C,., r = 0,1,2,3 is now reduced to 2(4)2 =
32. By expanding Eq. (3.5.24} one should see more clearly the ad-

vantages of separation of the long sequence,

Bp =bp+by +bp + by =ag+ay+ ag +ag

By = by + byW* + bou® + by

By = by + byW* + by + bt

By = by + by® + boh? + byu? 5.5.25)
C0=CO+C-| +C + G4 =a]+a3+a5+a7

C1 = o + Gl + cout + cqul

Cp = S + CWt + ¢+ cquf

C3 = S+ W8 + cout + cqu?

To illustrate the advantages of FFT more clearly, the spectral
values Hy, k = 0,1,2,...,N-1 can be expressed in terms of spectral

values By and €y, & = 0,1,...,g-as follows
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Hop = Bg + Cp

Hy = By + WGy

Hp = By + WZCZ

Hy = B3 + WC, (3.5.26)
Hy = Bg + W'C, o

H5 =By + w501

Hg = By + WOC,

Hy = By + W ey .

Now the sequences by and ¢y, £ = 0,1,2,3 can be further halved to

obtain four short sequences of two terms each. They may be written as

follows
1 .
Dp =z dgu'" r=0,1
j=0
1 4rj
Er = ¥ ejw r=20,1
j=0
(3.5.27)
1 :
Fp = & fjw4rj r =0,
j-.-..-
. 1 ) .
Ko = = KT r= 0,1
j=0 9 |

By expanding Eq. {3.5.27), they are given as follows
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d
dyu*
€
et
i
fo + 4
ki
ké + k{w4

k0+

]

!
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ay
a0
az
az
a
a
as
a3

(3.5.28)

Combining Eqs. (3.5.25) and (3.5.28), the spectral values B, and

Cr= r =

sequences as follows .

where relations W8 = 1 and w10 =

H

[0}

Do *+ Ep

Dy + Equ?

Do + Egh
£ uC
Ko

KyW°

ko

Dy +
Fg +
Fl +
Fg +

Fy + KqWP

2

W~ are used.

0,1,2,3 may be expressed in terms of the four short spectral

(3.5.29)

Therefore, the basis to

calculate the finite Fourier transform of a time series ays k = 0,1,2,

...,7 is to use the sets of equations (3.5.28), (3.5.29) and (3.5.26)

in this order.
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The example illustrated abové gives the basic reduction procedures
needed to calculate the finite Fourier transform of a time series with
eight data sampies. From Eqs. (3.5.26), (3.5.28) and (3.5.29), each
one of them requires 8 complex multiplications and additions. Thus
the finite Fourier transform calculations can be achieved in a total of
24 complex multiplications and additions. Using the straight forward
calculations in Eq. (3.5.23), a total of 64 complex multiplications
and additions are required.

The reduction of the time sequence can be carried on as tong as
each reduced data sequence has a number of data points that is divisible
by two. This FFT technigue can be generalized to handle a time series
of any length N as Tong as N = 2P, where p is any integer larger
than 1. The number of complex multiplications and additions is pN
instead of Nz, and therefore since always p << N the number of calcu-
lations is drastically reduced.

In summary, the basic steps for using FFT algorithm to perform
spectral calculations for a time series with N = 8 may be written as
follows:

1. Use Eq. (3.5.28) to calculate the spectral values (Dgs D7, Eps
Ey,> Fos Fys Ké, K{). These eight values may be stored in the position
(complex) occupied by the original data values for they are no Tonger
needed.

2. Use Eq. (3.5.29) to calculate the new set of spectral values

(BO, BT’ 829 339 CO’ C], cz’ CB)-
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3. Use Eq. (3.5.26) to obtain the required finite Fourier
transform set of spectral values (Hp, Hg, Hy, Hg, Hy, Hc, Hy, Hy).
It is seen that these spectral values are not arranged in the
required order. A bit-reversal procedure is therefore necessary to

align them in the proper order.

3.5.2.2 Mathematical Formulations

There is a large number of fast Fourier transform algorithms and
computer programs available, the details of their computations are
difficult to understand. It is therefore advantageous to develop a
new algorithm based on the original theory presented by Cooley and
Tukey [19]. The general mathematical formulations for FFT without bit-
reversal procedure are presented in this section. A computer program
based upon the mathematical formulations of FFT is developed and pre-
sented in the appendix.

From the_definition of the discrete Fourier transform in Eq.

(3.5.22), r may be expressed in the form of

p-2

. p-1 . ' . 2 . .
r= Jp_]2 + 3,2 oo+ 3,20 4 312 + g (3.5.30)

p-2
where jo = 0 or 1 for all 2.
The time series ay, k = 0,1,2,...,N-1 can be separated into two

time sequences each containing half of the total number of data points,

thus Eq. (3.5.22) becomes

He = T oallp) + I aig (3.5.31)
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-i2 ) -1
where Wy = e "= /-1, Ny o= g'= 2P and p is the total number of
times necessary to reduce the time series into two-point functions.
By changing the summation 1imits in the second term on the right hand

side of Eg. (3.5.31), it may be written as

Ny -1 r rk

1
fy = Loy + ayeny Wo'1 Wg™ ! - (3.5.32)

Furthermore, Eq. (3.5.30) can be rearranged as follows

r - Jg

_ s p-2 | . p-3
5 = Jp_]z + Jp_22 +

L g2 43y =y (3.5.33)

Substituting the newly defined value ry in Eq. (3.5.33) into the Eq.
(3.5.32) one obtains

jok r1k

N, -1 jg\
2 2y N | w N, 5
Hy. = kio ay + ak+N1wo } Wo “0“1 (3.5.34)

where use has been made of the fact that WM = 1 for the integers
n=1,2,...,p. Eqg. (3.5.32) may again be written as

P]k

M RO I k=0,0,2,...,N-1  (3.5.35)
r = I Bpes N0
k=0 30
where
Jok

(1) : N
a2k+j0 = {ak + ak+N]w0 }wo . (3.5.36)

&
|

g%
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By using similar procedures, Eq. (3.5.35) can be further reduced

into another set of time sequences as follows

r1 r1k
_\NZ'] (1) % -1 (1) N—_
" e aZk”J'owo ' k=N, Bk+ oo
NZ'] (1) ¥ ‘ﬂ‘!'—' Nz-] (1) " T X
= 7 a - + ¥ a .
k=0 2k¥ig 0 o 2krigrng "0
” M-ty () ) ':;a—k
_ 2- 1 T 1 2
fir = 2o [{%2ktig * 22krjgemMo” Yo f 0T, (3.5.37)

N -2
where Ny = El-= 2P = %
T I B .
rg == g tippt e tig2 g
gt
5 J
woz = (_-I) 1

Eq. (3.5.37) can again be written as

r'zk
hoe 2 a2 R L
P Ly Mke2iyegy 0 k= 0,1,2,...,8,-1 (3.5.38)
where 1k
(2) 1, .M j.. 0
a4k+2j~|+j0 {a B2k+i ¥ B2k+j Ny (-1) }”0 . (3.5.39)

By employing similar halfing procedures, a general form may be

developed through fnduction as follows
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rk

N-1 N
H. = T a.W
r k=0 k™0

r‘-ik
M-1 () W

= 7 a s W
k=0 2k+J0 0

kE‘O 4k+2§1+jp 0

= Ns-] a(3) 1 N s W
o 28kHiz*2i1+igh

Np-1-1 (p-1) N

(3.5.40)

where p is the number of times the data sequences are decomposed into
shorter sequences.
By employing halfing procedures a total of p times, one obtains

the following expression

N -1 {p} fEE
W= P N
r T

a p
k0 29k+2P‘1jp_1+2p”2jp_2+...+2j1+jow0 ,
k = O,] :29-°-5Np_] (3.5-4])

where
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{(p)
a p p-'I. p-2. R .
2Pk+2 Jp_]+2 Jp_2+...+231+30
. Jp-1k
1 Jp..]q NP-:T—
= 1 (-1} a p-1 p-2. p-3. . WP
q=0 2" k+2 Jp-2*2 Jp_3+...23]+30+qﬂp*]
N ,
i I
Np - 2 - 2 .

The summation 1imit in Eq. (3.5.41) is no longer in existence if the
time series of 2P data samples is halved continuously a total of p
times. Thus, Eq. (3.5.41) can be written as
(p) (
p)

H. = a p-7. -2, . . = a (3.5.42)
1 Jp_1+2p Jp-g*..¥2i14ig "
which is the final result of a single point transformation.

The previous mathematical developments may also be written in

another form of notation so as to be able to grasp more clearly the
ideas involved in developing the FFT computer program. In general,

Eq. (3.5.22) may be written in the following form

N-1 rk

H(r) = kEO a(kp_],kp_z,...,k},ko)woN r=0,1,2,...,N-1

(3.5.43)

where r and k is expressed by
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g 2P o v 2 + g

(3.5.44)

o
n

p-1 p-2
2Pk + 27Kyt el 4 2Ky kg

and ky and j, take on values for 0 and 1 only, for all &.

Expanding the exponential term on the right hand side of Eq. (3.5.43),

it gives
EE r2P- 1k 1/N rk{1)/n
W' =W TPT Mg
1 p-1 rk(1)
= Wglokp-1/2 wo(2P Jp-1+.-. 4231027 kg /Ny W
. . 1

_ i J172 ik ugd oK 7y kg (3.5.45)

Where N-I = g = zp-] 1
3o p- -3,

e = P P g, g

and | (3.5.46)

1) - »p-2 p-3
k(1) = 2p kpeg * 2773k, 3+ L+ 2K + kg

Equation (3.5.43) may be expanded into the following form
1 1 1 1

H{r} = x T I ... I alky_1:Kp_nse..5kyska)
_ _ _ _ p-12%p-2 1270
ko=0 k1=0 kp=0 k4= .

- s (1 ] |
ugl0kp-1/2 woggk(A)/N w0r1k( )N, (3.5.47)

where worlkp-1 1s unity due to the fact that both r1 and kp_1 assume

an integer value.
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Equation (3.5.47) may be written as follows

(N B 1
Hir) = 2 2 3 oo aglky_ssk,_qsee.5kyskgidp)
| kg0 ky=0 kp=0  kyp=0 | PETP 3 00
F]k(])
N
Wy | (3.5.48)

whare a](kp_21kp,3,---.k1ak0;j0)

1 ioko1/2 ok TN
= T alkpopsKpogse.eskyskgdig P U
k _'|=
p
(3.5.49)
Similarly, by letting
aZ(kp-3’kp—4""’k1’k0;‘j]’j0)
1 1k /2 Gk 2D/
. vy J1Kp-2/2. N 1
= I a-l(kp-g, p- =33 k] sk()sJO)wO P WG (3-5.50)
k. »,=0
p-2
Eq. (3.5.47) may be further reduced to
(=1 ( , )
H(r) = & I ... an(k,. _askn as...5K3:Kn3J153
- _ _n G2VFp-32%p-4 1:%0>Jd1:d0
ko=0 k=0 kp_3=0
rzk(z)/N .
g ‘ (3.5.51)
N -
where N, = L 2p 2,
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"1 e, p-4. L

rg= 7 =2y 1+ 2" Uyt ..+ 23+ (3.5.52)

and
2) . ,p-3 -4 .
K21 < 2P o+ 2P g+ ol 2kg + kg
In general, by letting
aq(kp_q.\.'[ ’kp_q_Zg- e sk] 5k0;jq_'| !jq_ZS- .. !j] 93.0)
: Ig-1¥p-q/2

= K L -0 aq_](kp-qskp_q_]a---:k]=k0;jq-23jq-3s---:j]’jO)NO
pP-q

for q <.ip {3.5.53)

EEC
w-]q,,'lk /Nq_] L]

the general form of the Fourier coefficients.way-berwritten as

1 1
H(r) = = T .. z a,(k K_qeose+-2K1,Kn3
B _ _ q p_q_]s p-q 2" sR] s K()>
kg=0 k1=0 ko =0

r k(q)/Nq
Jq-1+dg-gs--+»31.30MWg (3.5.54)

where Nq =

(3.5.55)

g
A%
e
)
-+
—
+
€
LD

and
k(Q)

3
[a>]
=

-q-1 -q-2
knge1 * 2PV kg e 2k + kg

For the case p = q + 1, Eq. (3.5.54) may be written as
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H{r) ; a_ (kpns:j j ‘ 31,300 rp']k(p_})lnp'] (3.5.56)
= _ R A IR 2J0) i+
kg=0 p-11"02Jp-22Jp-3 ] 0

where p is the largest integer value of the time series with sample

lTength N = 2P, Further reduction of Eq. {3.5.56) gives
H(Y‘) = ap(Jp.-] sjp_zs---sj'l aJO) (3-5-57)
which is simply the transformation into a single data sample.

3.6 Computing Techniques

The computational procedures using the FFT method for power and
cross spectra of multiple stationary time series is based on the re-
quirement that the total number of data points transformed to be
integer powefs of two. If the blocked time series do not have this
required number of data points, zeros must be added to fill up the
series to the required number before applying Fourier transformation.

In case the calculated spectrum will be used to obtain the cor-
refation function, then the time series should be filled up with zeres
to obtain a total data points of 2P+l to start with. 'This_new approach
of obtaining correlation functions by using two passeé of Fourier
transformation has been considered to be more economical in comparison
with the direct multiply-add operations in obtaininglthe correlation
functions. These correlation functions can further be used to obtain
smoothed spectral estimates by applying the properly chosen lag
windows whose characteristics are more generally discussed in time

series analysis [51].
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-

The general procedures used in computing power and cross spectral

estimates via FFT are listed in the foliowing two sections.

3.6.1 Power Spectrum

Reasonable power spectral estimates cam be obtained for a time
series of length n = 2P by the following procedures:

1. Either truncate the excessive data or add zeros so the number
[

Mi=1.2,.0m=1,2,..,

of data points for blocked time series a
M-1, to be transformed is n = 2P, where p is an integer and M is the
total number of blocks.

2. Taper the blocked time series with a cosine taper data
window as discussed in séction 3.3.1 or with another appropriate taper-
ing function as presented in section 3.3.2.

3. Compute the finite Fourier transform of each blocked subseries
by
n-1 'y

BI(F) = = ap (t)W'K P o= 0,7.2,..05n0-] (3.6.1)
k=0

where W = éqzw/nand m=1,2,...,M-1 is the biock number.

4. Compute the absolute squared value scaled appropriately to

obtain the power spectral estimates by

.\m_git_ 2

Som
Gap = "n |

r r = 05] 9‘2,--;9"’] (3.6.2)

m .
3 for § =

. - . s
where subscript a in G, refers to blocked time serjes a

1,2,....nand m= 1,2,...,M-1,
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5. Adjust the power spectral estimates for a scale factor due

to the cosine data window tapering by
e r=0,1,2,...n-1 . (3.6.3)
6. Adjust the-segment average for M-1 blocked spectral estimates
each of length n by
R 1 M1, m ‘
Gar = M1 I Gyy r=0,1,2,...,n-1 . (3.6.4)
m=1
7. Apply the frequency smoothing for segmently smoothed spectral
estimates of Tength n = 8192. The spectral estimates are unique only
up to the point where r = §'+ 1. This 15 due to the result of the
application of the Fourier transform. At this point the Nyquist cut-
off frequency occurs. The smoothing is performed for 4096 spectral
estimates without including the zero frequency point.

Looking at the printed-out spectral estimates of 4096 values,
the energy is more concentrated in the lower freqdency range. The
proposed frequency smoothing technique as discussed in section 3.4.4 is
therefore adopted. The frequency smoothed spectral estimates may be
considered as representing the midpoint of the frequency interval from
fk to frsg-1> k > 1, where 2 is the chosen average value except when 2
equals unity. The value of the frequency associated with different
values of & and which corresponds to.the spectral estimate in Egs.

(3.4.5) to (3.4.9) is calculated as follows
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g =1

fi = kaf k=1,2,...,8, (3.6.5)
2 =4

fi = [4(k-7) + 2.5]af k = 9,10,...,38 , (3.6.6)
L =16 |

fr = [16({k-31) + 9.5]af k = 39,40,...,62 , (3.6.7)
2= 64

T = [64(k-54) + 33.5]af k = 63,64,...,86 , (3.6.8)
and £ = 256

fk = [256(k~79) + 129.5]af k = 87,88,...,94 , (3.6.9)

where Af = ﬁ%{-. The number of the spectral estimates was reduced to
94 as a result of the application of the segment average and frequency
smoothing technique in section 3.4.4. The frequency points represented
in Equations (3.6.5) to (3.6.9) are corresponding to these smoothed

spectral estimates.

3.6.2 Cross Spectrum

The computations for the cross spectral estimates between two
discrete time series a; and by, 1 = 0,1,2,...,n-1 seem to be more in-
volved due to the requirement of obtaining the coherence function and
phase angles between the two time series. The general procedures for
calculating cross spectral estimates via FFT can be written as follows

1. Either truncate the excessive data or add enough zeros in

' . m .
the two discrete time series aim and b; » 1=0,1.2,...,n-1 so that

n = 2P as discussed in step 1 in section 3.6.1.
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2. Taper both blocked time series a%m and b%m, i=0,1,2,...,n-1
with the cosine taper data window or other appropriate data windows
as presented in section 3.3.2.

3. Let a%m be the real part and bi™ be the imaginary part of a

1 ] !
newly created compiex time series ¢;" = a;™ + jb-m, i=20,1,2,...,n-1
i i i

and j = /-1 .
4. Compute the finite Fourier transform of each blocked complex
time series by

- n-1 'm 7
CM(F) = = o (t) WK r=0,1,2,...,n-1  {3.6.10)
-2 k=

n

where W = e andm=1,2,...,M-1 is the block number.

5. Obtain the respective spectral values of both aj and

m
by » 1 =20,1,2,...,n-1 by using the properties of the Fourier trans-

formation as discussed in section 3.5.1 as follows

k3
- 6E) + S (F) (3.6.11)
Crl(f) - 2
and | *
- i
. m CrM(F) = Cp_o(f
Cry(f) = = 73 n-r () (3.6.12)
x -4

~m ~m
where C,_.(f) represents complex conjugate of Cp-p(f) and j = v=T.
6. Compute the cross spectral estimate éaﬂr, r=0,1,2,...,n-1 for

block m by -

~ M 2At "‘m* ~FH
Gaby = 0 |Crp(F) Cry(f)f . (3.6.13)

7. Adjust the cross spectral estimates by a scale factor due to

cosine data window tapering in each block
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~ M _ ~ M '! B n
Gabr(f) = Gabr(m) r = 0,] ?2,...2- + 1 (3.6.14)

8. Apply the segment average smoothing for M-1 blocks of spectral
estimates each of length n by

B 1 m
Gapr(F) = W1 I Gabr r=0,1,2,....0+1 (3.6.15)

9. Pick up the real and imaginary part of éabr by
Gabr(f) = Cogpplf) = J Qupp(f) ¥ = 0.1,2,..5 + 1  (3.6.16)

where Coapn(f) is called the cospectral density function and Qupy(f)
is called the quadrature spectral density function.

10. In order to apply the proposed frequency smoothing technique
for cross spectral density estimate, two different ways can be taken
as the following

a. Smooth the cross spectral estimate &,p,.(f) and then ob-
tain the Co- and quadrature-spectral density function.

b. Smooth the real and imaginary parts of Gupe(f) individually
and then obtain the final smoothed cross spectral estimates.

These two prcoedures can give different results, since the
linear smoothing operation, the non-linear operations of the square
root of squared value, and division are not cormutative. In meteoro-
logical applications, it is the co- and quadrature-spectral density fu-
nctions that are of interest instead of the positively valued cross

spectral density function. Thus, the procedure of smoothing the real
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and imaginary parts of the cross-spectral estimates separately is
used in this case. The final smoothed cross spectral density esti-

mates are obtained by

Gabr(F) = Y002 (F) + Qufrlf) r=1,2,...,98 .  (3.6.17)

11. The phase angle contained in the smoothed cross spectral

estimate Gapp(f) is calculated by

f
eabr' = tan-'l [gzb;( l } r=1,2,...,94 . (3.-6.18)
a Y‘( j

12. The smoothed squared coherence estimate is given by
A2
2 Babr(f)

r=1,2,...,% (3.6.19)

where G,,.(f) and Gpp(f) are calculated by Eq. (3.6.4). The frequency
smoothing technique of ;,(f) and Gpp(f) was presented in the previous

section.



6HAPTER IV
STATISTICAL ERRORS

Errors in calculations of statistical quantities of digitized
time series are quite uncertain because of the large amount of data
collected, the underlying probabilistic nature of the data and the
method in deriving the desired statistical parameters.

The random nature of the data makes it almost impossible to know
the deterministic characteristics of a physical phenomenon. It is
only possible to know the average level and to obtain some estimate
of the relfability or accuracy of this average level.

In representing an estimate of a statistical parameter, no indi-
cation of the reliability of the estimate is found from the simple
calculations of the estimated value. Given the size of the sample does
not provide the means to interpret the accuracy of the estimate as
a function of the sample size. A more direct indication of the
accuracy is desirabile. '

The standard error of any estimate is used to indicate the
reliability or precision of the calculation of this estimate. What
one really wants is a range of values within which the estimates
should fall. Therefore, the notion of confidence interval for a

parameter is commonly used to serve this purpose.

80



81

This chapter will investigaté the validity of estimating the
blocked mean and blocked variances in the blocked time series in
relation to the sample mean and sample variances of the total sample.
The confidence interval of spectral density estimatés as a result of

using the FFT‘technique will be determined in this chapter.

4.1 Mean Value Estimate

The block mean value for n data points of the ith time series in

the mth block may be calculated by

A -

=

As(d)  i=1,2,....4 (4.1.1)

ne1 =
-

J

where bar denotes the mean value and i indicates the number of the
time series,
The sample mean of the time series is simply the arithmetic

average of the block mean values as obtained by

Aj v

A

|-
oo =

i= 1,é,...,4 | (4.1.2)
m=1 .
where M is the total number of blocks in the time series.
In case the time series has not been blocked, then the sample
mean is calculated by
.._*_

LT
i

I

A;(3) i=1,2,....4 (4.1.3)

o=
—

where N is the tota1 number of samples in the time series (j.e. N =

nM).
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Combining Eqs. (4.1.1) and (4.1.2), one obtains

. 1 M n ]
AV T o jil A;{(3)
1 n 2n Mn
= j21 Ai(i) + j=ﬁ+1 Ai(3) + ...+ j=(M§1)n+1 A;(3)
1 Mn ]
- ﬁﬁ'j§1 A; (3) i=1,2,....4 (4.1.4)

Comparing Eqs. (4.1.3) and (4.1.4), it is seen that the sample
mean of the sample can be calculated from the average of the block
mean values in each subseries. The only possible difference between
the calculated sample mean value of Eq. (4.1.2) and (4.1.3) is the
summation of large numbers by floating-point representation in the
computer without using double precision. In fact, the sample mean
values calculated from Equation 4.1.2 should be more accurate than

using Equation 4.1.3 directly.

4.2 Variance and Covariance Estimates

The sample variance and covariance are calculated from the fil-

tered series with exactly zero mean by Eq. (2.4.2) as follows

;oM
aiaj = ¥-1 E] aiaj 1. = 1.,2,...,4 (4.2.])
m:

where block variances and covariances are calculated from Eq. (2.4.1)

—m _
aiaJ =

:!—-‘
fl 15

a.i(k)aj(k) 19j = ],2,&--94 (4‘2.2)
k=1

Y
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1:25...,4 represeﬁts filtered time series. Equal sub-

where aj, i
scripts i = J in Eq. (4.2.1) denote the variances while unequal sub-
scripts i # j represent the covariances.

In case the filtered subseries has a near zero mean but not
exactly zero mean, then the values of block variances and covariances
calculated by Eq. (4.2.2) will be overestimated. The variance and
covariance of the total sample wﬁth near zerg mean values for the sub-

series are calculated as follows

x* 1 M-1 1 N —m o
a;8s = p7 I |p I (a;(k) - a; ) (a;(k) - a5)
i M-1 =1 .P k=1 i i 3 J
LMY et - B B e
= L |— I astklas(k) - — z as(k
MT ey Py 77 N
—m
a.'n n m_m
- g a; (k) - %‘ I 3 aj
N k=1 k=1
1 M-1 [ ]
=T 3 z.2." - 2
M-1 2 155 T4
=3y - gy E] aj a; (4.2.3)
where
1 n
a; = NG = 1,200, . (4.2.4)

Consequently, E;m is the mean value of the subseries after the moving

average filter has been applied to the total sample. The reason we
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chose the number of blocks to be M-1 here is because the data samples
were filtered and the ends were lost. MNow, the sample variances and

covariances based on the total filtered sample can be calculated as

follows

_._**'IN —_— S

ajay = § k£1 (a(k) - ay) (aj(k) - aj) . (4.2.5)
where aj is defined by

— 1 N .

ai=ﬁé1yﬂ) i=1,2,...,8 (4.2.6)

and N is the total number of data points in the filtered sample. In
this case, N is equal to n(M-1) data samples.
Expanding the terms in the right_hand side of Eq. (4.2.5) and

combining, one obtains
Tk ——

a,iaj = Qd:d4: -~ 1‘ —éq:]r isj = ]923'l'$4 (4'2'7)

where the Egquations 4.2.1 and 4.2.2 have been used.
The error E(m) in variances and covariances as a result of the
subdivision of the original time series in blocks may be obtained by

combining the Equations 4.2.3 and 4.2.7 as follows

—_—k *
a'iaj - a.d

E{m}

1l

1 - —
M-1 ').."1 CH aj aCTRCY (4.2.8)
m:

1]

or
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E(m) = prlTM; @7 - 37 (35 ~ " . (4.2.9)
m=1

The value of this error E(m) can be discussed by the following
two Timiting cases:

1. In the Timit when m = 1, the total sampTe consists of one
block only, the error is zero.

2. In the 1imit when m approaches infinity and the sample con-
tains a finite number of data points, then each block contains only
one data point. In this case, the block mean value is simply the
value of the data point itself in the block. It is obvious that the
error E{m) is again zero.

In case when the number of b]ocks‘is chosen to be a finite value
as in most practical situations, the error E{m) can be significant
since it depends on the time of the subseries. The time of the sub-
series will affect the shape of the moving average filter as can be
seen from Figure 5. The effective cut-off frequency in the filter with
different time interval is different. One should choose the block
length of the subseries to be comparable to the period of the hinimum
frequencies of interest. The storage limitation in the computer for
numerical calculations imposed another restriction in the selection

of the block Tength in the subseries.

4.3 Spectral Density Estimate

For a stationary Gaussian random process {a(t)}, the power spectrum

for a sample record ap(t), k=051,.,n-1 of finite length n is defined by
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6alf) = 2 1im T E [[H(F,n)|2] (4.3.1)
e

where

n-1 _i
H(f.n} = 4t © a,(t}e jenfkat .
k=0

(4.3.2)
The estimate of power spectrum can be obtained by omitting the
limiting and expectation operations in the Eq. (4.3.1) to yield the

following

Ba(F) = o [H(fan) |2 (4.3.3)

with the narrowest possible resolution Bg = ﬁ%f"

For the discrete frequency values, the Fourier components are

defined by

_ H(f,n) _n-1 -j2nfkat
Hi = 5 kEO ak(t) e (4.3.4)
and the spectral estimate is given by
- 24t 2
Galf) = 55 [Hyl - (4.3.5)

The estimate of the spectral density function G;(f) is denoted by

éa(f) and is unbiased if
E[65(f)] =‘Ga(f) . (4.3.6)

The mean square error of the power spectral density estimate is

defined by

ms.e. = E[(§,(£) - 6,(£)%] . (4.3.7)
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In general, the power spectral density estimate is a function of
the number of data samples n. In order that Ga(f) is the consistent
estimate of the power spectral density function Ga(f), it is required
that

2im E[{Gy(F) - Ga(F))?1 =0 . | (4.3.8)
N

By assuming the random process f{aj}, i = 1,2,...,n to be un-
correlated white noise. Otnes and Enochson [67] proved that the power
spectral density estimate G3(f) is an unbiased but not a consistent

estimate of the power spectral density function Ga(f).

4.3.1 Chi-Square Distribution

The Fourier components H(f.n) computed by Eq. (4.3.2) are complex
with real and imaginary parts, Hp(f,n) and HI(f,n) which are uncor-
related random variables with zero mean and unit variance [6]. Both
Hr(f,n) and H (f,n) will be Gaussian random variables if the data
sample a;(t), i = 0,1,2,...,n-1 s Gaussian as a result of the linear

operation of the Fourier transformation. It is seen that the quantity
[H(F,0) 1% = HR2(£,n) + H2(F,n) (4.3.9)

js the sum of the sguares of two independent Gaussian variables.
From the definition of Chi-square distribution, each frequency com-
ponent of the power spectral density éa(f) will have a sampling dis-

tribution given by

2 | |
_2%{%2 ig_ | (4.3.10)
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where Xg is the Chi-square variabTe with two degrees of freedom. The
number of degrees of freedom, y, represents the number of independent
or "free" squares summing in the expression (4.3.9). The mean and

variance of the chi-square variable are y and 2 , respectively. The

normalized mean square error can be obtained by

2 _ EL(Ga(F) - 6a(f)] 2

= (4.3.11)
[6a(f)]° Y
where use has been made of Equation 4.3.6.
For v = 2, the normalized standard error is given by
E = = +1 ' (4.3.12)

which means that the standard deviation of the pSD estimate is as
great as the quantity being estimated. To reduce the‘error of the pSD
estimate as calculated by Eq. (4.3.5), smoothing the estimates is
necessary. By smoothing either segmentally or frequency smoothing
as discussed in chapter three, the number of degrees of freedom y can
be increased. It is seen, from Eq. (4.3.12) that the normalized
standard error can be rgduced if v is increased.

The {1 - &) confidence interval for the‘power spectral density
function G3(f) around the frequency f based upon an estimate éa(f)

measured with a resolution bandwidth Bg and a record length n is

given by
[¥Galf) ¥Ba ()
26 a3 Ga(f) < —'EE——— =1-a (4.3.]2)
e R

2
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and Y = 2Bgn . : (4.3.13)

The term, 1 - a, is a fixed confidence level which'commonTy is taken
to be 0.80, 0.90 or 0.95. The true value G(f) Ties between the two
values in the bracket of Eq. (4.3.12). The Chi-square distribution

XEY;Q is tabulated in Table II1 and defined by

x2 = [b such that Ib P(xi)dxs = q] ' (4.3.14)

Yo

For degrees of freedom where y > 30, the fo]]owihg expression

may be used to obtain the x2 distributions.

RIS 410

*
where T, is the corresponding percentile of the standard normal dis-

tribution (Table I).

4.3.2 Numerical Example

An example will illustrate the application of Equations 4.3.12
and 4.3.15.

The total number of data points used for the estimation of the
spectral density for 43 blocks each of which contains 8192 data points
is

N = 8192 x 43 = 352,256 .

The effective bandwidth for a sampling rate of 200 samples per second

is
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= 1 _
Be = Wit = 0.000567 HZ .

The number of the degrees of freedom is
y=28T=2.
The 95% confidence interval for two degrees of freedom in Chi-square

distribution is found from Table 3 to be

X35 .975 = +051
(4.3.16)

Las]
1

X3, .05 = 7%
If éa(f) is the spectral density estimate, then the 95% confidence

interval of the true spectral density function G;(f) is given by

[7_2—3?5' Ga(F) < Ga(f) i‘(jT'zo?T’ éa(f)].

or

[0.271 Ga(f) < Ga(f) < 39.215 Ga(F)] . (4.3.17)

It s seen from Eq. (4.3.17) that the true spectrum lies in a
wide range of values and that 1ittle confidence can be placed on the
estimate. The range of the confidence interval can be reduced by in-
creasing the number of degrees of freedom. The number of degrees of
freedom can be increased greatly when the segment average technique is
applied. By averaging over 43 blocks of spectral density estimates,
the resulted smoothed spectral density estimate has the number of

degrees of freedom as follows
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y =43 x2 =86

The 95% confidence bands for 86 degrees of freedom in Chi-square dis-

tribution is formed by using Equation 4.3.15 as follows

2
Xgg; .975 = 61.68
? (4.3.18)
X863 .025 = 113.2
and the true spectrum lies in the interval
[.76 G4(F) < 64(F) < 1.39 G, ()] (4.3.19)

It is seen that the range of values in between which the true spec-
trum lies has been reduced as a result of applying the segment smoothing
technique in the spectral density estimates. The application of
frequency smoothing on the spectral density estimates may give a much
better representation in the range of estimated values.

" The analysis shown above was based upon the assumption that the
data samples were both Gaussian and white. In general, the data are
colored {i.e. correlated) in some manner. This has the effect of
reducing the number of the degrees of freedom in the Chi-square dis-
tribution. The standard practice is to use the white noise results

as a guideline in the spectral density estimates [67].



CHAPTER V¥
DISCUSSION OF THE RESULTS

The data used for the statistical analysis in this dissertation
were measured with either the Model 1080D Total Vector Anemometer
probe (triple split films) or the Model 1296L dual split film
probe both manufactured by Thermo-Systems, Inc. The operation and
the analysis df the data from these probes are discussed in detail
in references [95] and [108] respectively. In conjunction with the
two types of TSI probes a set of Gill propeller anemometers was used.
These propeller anemometers were mounted in such a way that one was
parallel to the TSI probe and the other perpendicular to the first
one and both in a horizontal plane and located adjacent to the TSI
probe. A detailed discussion of the operation of the Gill anemometers
and data analysis can be found in Appendix A. The Gill anemometers
were used majn]y for comparison of results with those obtained from
both types of TSI probes. The anemometers were located on the top of
the air exchanger of the low speed wind tunnel at Virginia Polytechnic
Institute and State University. This was the best location available
in the neighborhood of this wind tunne! in which the anemometers were
calibrated. The connecting cable between the probe and the anemo-
meter was 350 feet long, and since it was not feasible to move the

trailer in which the data acquisition system was located, the above
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described location for the probes was the best available within
a 350-foot radius from the trailer.

It turned out that the winds measured in this Jocation as mentioned
above were mainly from a north-west direction. However, due to the
presence of upstream buildings and due to the location of the anemo-
meters on top of the wind tunnel a flow was measured with an appreciable
vertical component and with relatively large fluctuations in magnitude
and lateral direction. Asra result of the type of data measured, a
great deal of effort was used in the proper analysis of the data with
respect to stationarity, filtering and smoothing of the calculated
statistical quantities. Mean values, variances, covariances, power
spectral estimates, cross spectral estimates, coherence functions and
phase angles of the three turbulent wind components in the mean wind
oriented coordinate system were calculated.

During the period in time that these data were taken, considerable
troubles were still encountered with the data acquisition system
(see reference [95] for a detailed description of the data acquisition
system). Specifically, the PDP-11/20 mini-computer had an intermittent
problem which was extremely difficult to pin down. Also, the data
acquisition as well as the consequent digitizing of the data was
affected by the simultaneous operation of the wind tunnel. It was
found that fluctuations in line voltage as a result of the starting of
the wind tunnel often erased the recorded time of day or the recorded

voltages of the anemometers.
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Due to the fact fhat two dffferent anemometers (TSI and Gi1l)
were used simultaneously, the data from the Gill had to be recorded
on an F.M.‘tape recorder first and consequently played back at a
later time in order to be digitized. The data received from either
TSI - anemometer was fed directly into the multiplexer and directly
stored on the digital tape. It often occurred that bad data or no
data were recorded on the digital tape or that tape marks disappeared
and as a result the data were useless. Since this period, the entire
data acquisition and data handling system has been moved to NASA -
Wallops Station for data gathering from the meteorotogical tower at
Waliops Istand. The Wallops Island data will be ahalyzed at a later
date, only data taken at the Virginia Polytechnic Institute and State
University location will be discussed in this dissertation. The data
acquisition and data handling system while in operation at Wallops
Island did not experience the breakdown and problems as were en-
countered when in operation at Virginia Polytechnic Institute and
State University. Consequently, the data discussed in this report
are somewhat sketchy, but adequate to indicate that very good
results can be obtained with the system.

The accuracy and the efficiency of the computer program which
was developed in order to calculate the statistical quantities of a
digitized time series, was tested against a simulated time series. The
theory and the processing of digital simulation of random processes

is described in detail by Sinha [87]. If the power-spectral density
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function is known, a sample of the corresponding time series can be
developed by inverse fast Fourier transformation.

In order to simulate the streamwise turbulence component in
the atmosphere, use was made of the semi-empirical von Karman
spectrum given by the following expression in dimensionless form

aLf
fG(f) _ U

w2 [1 + 70.78 (

Lf.2]5/6

1)

A 20% intensity of the turbulence was assumed so that j:? = 0.20 U.
Here, G(f) is the power spectral density function of the streamwise

turbulence component so that

J G(f)df = v ,
0

and L is the longitudinal integral scale which varies with height but
:which was chosen to be 360 feet.

Based on this information a value for the simulated time series
was calculated at intervals of .05 seconds. In this manner (2)]5
data points were generated which represents the digitized time series
sampled at a rate of 20 samples per second and of 27.31 minutes
duration (Figure 12). This simulated, digitized time series was then
used as the input to the computer program which was developed for the
statistical analysis of time series of long duration. The calculated
power spectral density function was then compared with the original

semi-empirical von Karman spectrum from which the time series was
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developed. As can be seen froﬁ Figure 13, the similarity is very
good, especially at higher frequencies. At Tower frequencies, the
estimates of the power spectral density function seem to deviate a
great deal from the expected values which is due to the limited
sample length of the simulated time series.

Because of the way the fast Fourier transformation works, only
a few points at the lower frequency range are calculated and as a
result one can only resort to the so-called segment smoothing of
the spectral estimates in this range. At the high frequency range
the density of calculated spectral estimates is much higher and as
a result the so-called combined smoothing process can be applied
with the result that the estimates show much less scattering.

The statistical quantities are calculated from the data
measured by three different wind measuring sensors, namely, Gill
anemometers, TSI Model 1080-D total vector anemometer and the TSI
Model 1296, dual split-film probe for four separate runs. Mean
values, variances and the covariances are all Tisted and compared in
Tables IV through VII. The smoothed spectral density estimates are
plotted versus frequencies in Figures 14 through 25.

In Table IV, the block means, samples means and the number of
reverse arrangements of the block means used for statistical test are
Tisted for each velocity component in the sensor oriented coordinate
system. Mean wind velocity, variances and covariances of the ve-
Tocity components and temperatufe in the mean wind coordinate system

are also tabulated. The calculated numbers of reverse arrangements of
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the block means of the velocity components show that the hypothesis of
nonstationarity as far as the trend in the data is concerned is accept-
able at the 10 percent level of significance for the A and B components
of the veloicty. The reverse arrangements of the block means of the C
component shows that some trend is present. However, for this run the
resutts of the trend test are in general acceptable. If the number of
reverse arrangements would be significantly different from the expected
numbers given in Table II, the hypothesis of acceptable nonstationarity
would be rejected and the data would be rejected for further analysis.

The results of run 10 show that an appreciable vertical mean ve-
locity component is present and the turbulence intensities are between
20 and 25 percent for all three components.

The smoothed power spectral density estimates of each velocity com-
ponent of run 10 are plotted against frequency in Figures 14 through 16.
The area under the curves correspond closely to the respective variances
and at the high frequency range the spectrum functions vary as expected
as the frequency to the -5/3 power. Due to the Timitation of core storage
in the IBM 360/155 digital computer, the number of data points selected
in the subseries restricts the computation of the spectrum functions at
frequencies above 0.0244 hertz (period of 40.96 seconds). Due to the
chosen sample rate of 200 samples per second the maximum frequency at which
the spectrum function can be analyzed is 100 hertz.

The cospectrum between the longitudinal and vertical velocity com-
ponents is plotted in Figure 17, and the shape of the spectrum agrees
fairly well with that which was observed at Brookhaven, Long Island and

and- reported by Panfsky [72].
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In Table V, the results calculated from the data of run 11 as
measured by the TSI #1192 total vector anemometer and the Gill ane-
mometers are compared. In order that the results calculated from the
data as measured by these two different sensors are comparable, the
block means calculated from the velocity components measured by TSI
#1192 probe are transformed into the probe oriented coordinate system.
The number of reverse arrangements of the block means for measurements
from the TSI #1192 probe are calculated based on the velocity compo-
nents in the sensor oriented coordinate system. The number of reverse
arrangements of the block means for Gill anamometers are calculated
based on the data obtained in the probe oriented coordinate system.

The number of reverse arrangements for the block means of the
lateral velocity component is very high and after examination of the
data one can see that this is due to a gradual change in wind direction
or due to the gradual change from positive to negative lateral velocity
components. The longitudinal component of the velocity does nbt show
any trend and is not very much affected by the gradua] change in wind
direction. Comparison of the block means and the sample mean shows %hat
the longitudinal component measured by the Gill anemometer is consistently
higher than that measured by the TSI probe. The block means and the
sample mean of the lateral velocity component and the angle the mean
wind makes with the direction of the instruments compare very well.

Due to the Timited response characteristics of the Gill anemometers,
the turbulence quantities obtained from the Gill anemometer are consistently

lower than those obtained from the TSI probe. Due to the presence of some
high frequency noise during the data runs, the smoothed spectral estimates



have folded in the high-frequency range and_as a result the graphs for
the smoothed spectral estimates for run 11 are not shown.

In Tables VI and VII, the results calculated from the data of
both runs 12 and 14 as measured by the dual split-film anemometer and
Gill anemometers are tabulated and compared. Bofh these anemometers
measure the velocity components in the same probe oriented coordinate
system. Since the shafts of the propellers of the Gill anemometers
are parallel to each of the two perpenﬂicu1ar coordinate axes in the
horizontal plane, only the block means of the ]ongitudfnal and lateral
velocity comhonents can be compared in Tables VI and VII. The block
means calculated from the vertical velocity components as measured by
the dual split-film probe are tabulated only for completeness not for
comparison.

The number of reverse afrangements for the block means of the
longitudinal and lateral velocity components for both run 12 and 14 show
that the data are free of abnormal trends. Again the Gill anemometer

overestimates the block means of the longitudinal velocity component

by as much as 15 percent. The variances u2 and v2 are estimated Tower

by the Gill anemometers as before. For this particular type of flow the
vaiues for the covariance uw are very Tow and compafe reasonably well.
The horizontal angles of attack between the mean wind and the instruments
compare quite well for both runs.

In both Tables VI and VII, comparisons are also made for the values
of the sample means, the variances, and the covariances of the velocity
components in the mean wind coordinate system for the cases with either

the near-zero block-mean values removed or not removed. These near-zero
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block means are the mean values remaining in the data samples of each
block after having applied the moving-average and differencing high-
pass filter to the origional time series as discussed in chapter two.
The small near-zero mean values do not have any effect upon the values
of the mean velocity components in either the probe oriented coordinate
system or the mean wind coordinate system since the mean velocity com-
ponents are calculated from the unfiltered original time sefies. The
effects of these near-zerc means upon the estimated values of the
variances and covariances in the mean wind direction are not very
significant. They do have significant effects upon the estimated values
of the spectral density function at low frequencies.

Figures 18 through 20 show the plots of the power spectrum of
the longitudinal, lateral, and vertical velocity components measured by
TSI #122 in run 12, respectively. The power spectrum of the longitudinal
and lateral velocity components measured by the Gill anemometers in the
same run 12 are plotted in Figures 21 and 22. It is quite evident when
like spectra form the TSI probe and the Gill anemometers are superimposed,
the difference at frequencies higher than one hertz are considerable
expecially when one realizes that the ordinate of these spectrum functions
has a logarithmic scale. For both spectrum functions of the longitudinal
as well as the lateral turbulence components the Gill anemometers show a
too rapid decrease with frequency in the range from 0.5 to 100 hertz. In
the Tow frequency range the comparison is quite good.

The power spectrum of the longitudinal velocity component measured
by the TSI #122 probe in run 14 is plotted in Figure 23. In order to
obtain some spectral properties in the lower frequency range below 0.024

hertz, two new time series were generated from the data samples in run 14.
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The first one (series A) is generated by taking a 10-point non-over-
tapping average from the original time series. The second one (series
B) is obtainéd by containing every 10th point from the original time
series. The two newly generated time series have a reduced number of
data points to one-tenth of the original number. The sampling rate
is also decreased from 200 samples per second to 20 samples per second.
The spectral density estimates for the newly generated time series are
calculated by following the similar procedures used in computing the
estimates from the original time series except the segment average is
taken over the corresponding estimates of the four blocked subseries.
The power spectra calculated from the time series A and B are
plotted in the Figures 25 and 24 respectively and can be compared with
the original power spectrum of run 14 plotted in Figure 23. The
power spectra of the newly created time series show a greater deal of
scatter in the low and intermediate frequency range. The spectrum of
the time series B shows some frequency folding in the high-frequency
range since the data were not filtered at 10 hertz. The spectrum of
the time series does not show this folding since the averaging
procedure act as a low-pass filter at approximately 10 hertz. At the
Tow-frequency range the scatter of the spectrum data for both time
series A and B is more severe than for the spectrum data of the original
time series. The limited segment averaging results in a reduction of
the number of degrees of freedom which will give a broad confidence in-
terval in the spectral density estimates. The data in each block sampled

at a rate of 20 samples per second allows calculation of spectral estimates
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down to a frequency of 0.00244 hertz (period of 409.6 seconds) since

the number of data per block is limited to 2]3

or 8192. However, only
four blocks can be obtained from time series A and B,and in the Tow-
frequency range where only segment averagihg can be applied the spectral
data can only be averaged over four values as compared to 44 values

in the original time series. In order to get more reliable spectrum
estimates at frequencies lower than 0.0244 hertz, the total sample time
should be increased fen times if spectral information down to 0.00244

hertz is required. However, with time series A and B we can get some

idea how the spectrum varies at frequencies lower than 0.0244 hertz.



CHAPTER VI
CONCLUSIONS

The statistical analysis of a discrete time series with a large
number of data points representing a random process can be achieved
successfully by the procedures as outlined in this report. It is
necessary that these time series are subdivided into a certain number
of sample records each containing an equal number of data points. The
number of data points in each sample record depends largely on the
storage capacity of the available digital computer. The total number of
data points in each sample record should be chosen such that it is an
integer power of two in order to satisfy the requirements for the fast
Fourier Transformation. The statistical quantities calculated from
each sample record or data block can be used to determine the degree of
stationarity of the total sample by application of the nonparametric
statistical test. The existence of any trends in the time series can be
removed successfully by using the moving-average and differencing high-
pass filter. This type of statistical analysis was used to obtain
statistical information from long time series representing low-level
atmospheric winds and temperature. These quantities were measured with
fast response split-film anemometers developed by Thermo-Systems Inc.

A set of propeller-type Gill anemometers was used simultaneously ta
measure wind velocities in the horizontal plane in order to compare their
results with the results from the TSI probes.

The digitized data obtained from the TSI probes are stored on
digital tape as voltages. Seven voltages are necessary to obtain three

velocity components and temperature if the triple split-film probe is
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used, and five voltages are necessary to obtain the same information
when the dual split-film probe is used. The following steps are re-
quired to obtain the statistical information for each data set.

A. The first step is to calculate for each sample point the three
velocity components and the temperature. This information is obtained
through calculations as outlined in reference 95, and it is consequently
stored on another digital tape in blocks of 418 sample points each. The
velocity components are calculated in the so-called sensor-oriented co-
ordinate system.

B. In the second step, the block size is changed from 418 sample

points to 213

= 8192 sample or data points. First the meansof each ve-
Tocity component and the magnitude of the mean velocity for each block
are ca]cu]ated. Also the mean temperature and the average horizontal
angle the mean velocity for each block makes with the probe axis is
obtained. In addition,the block variances and covariances for the three
velocity components and the temperature are calculated. The number of
blocks depends on the recording length of the data, but for a run of
about one half hour the number of blocks is 44. In addition to the block
means, the sample means of the velocity components, the temperature as
well as the horizontal angle between the sample mean-wind and the axis
of the probe are calculated. Also the number of reverse arrangements of
the block means of the velocity components and the temperature and those
of the block standard deviations of velocity components and temperature
are calculated. The Tattef calculations are made in order to check for

nonstationarities such as time-varying mean values or time-varying standard

deviations or a combination of these two. At this point further analysis
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of the data would be stopped if the number of reverse arrangements would
be significantly different from the expected numbers as given in Table II.

C. The third step of the data analysis consists of the removal of
the mean and low frequency components of the four time series. This is
accomplished with the use of the moving-average and differencing high-
pass filter. After this filter has been applied to the data four new
time series with new sample mean and without low-frequency components are
established. The cutoff frequency for this type of filter with a filtering
interval of 40.96 seconds (the length of one block) is approximately
.0108 hertz.

D. In the fourth step the sample variances and covariances of the
four filtered time seriés are calculated and consequently transformed
into the mean-wind coordinate system.

E. In this step the data representing the filtered velocity com-
ponents 1in the sensor oriented coordinate system are transformed into
components of the mean-wind coordinate system. As a result four time
series with zero mean are created representing the f]uctuating temperature
and, the fluctuating velocity components in the mean-wind coordinate
system.

F. In this step the power spectral densities of the four time
series obtained in step £ are calculated using‘the newly developed fast
Fourier transform method with the no-bit reversal procedure and also using
the appropriate combined smoothing techniques.

G. In the last step the coincident spectral density functioh and
the quadrature spectral density function of two different time series
are calculated using the newly developed fast Fourier transform method

and in addition using both the segment as well as frequency averaging method
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In order to check the accuracy of the calculated power spectral
density extimates of any time series, spectral densities were calcul-
ated from a simulated time series which was generated from a known
spectrum function. The calculated spectral densities correspond quite
well with the spectrum function from which the simulated time series
was generated, This\indicates that with the newly developed computer
program using the fast Fourier transform with a no-bit reversal procedure
and with proper smoothing proﬁedures,accurate spectral information can
be obtained in the frequency range between 0.0244 and 100 hertz. Spectral
density estimates of a lower degree of accuracy for frequencies less
than 0.0244 hertz can be obtained by creating a new time series by taking
as an example a 10-point non-overlapping average of the original time
series. Mean values, variances as well as covariances of the two hori-
zontal wind components measured with the TSI probe were compared with the
same quantities measured simultanecusly with the Gill propellor anemometers.
The discrepancies in these quantities can be attributed to the varying
and Timiting response characteristics of the Gill propelier anemometers.

As a result of carefully carried out calibration procedures and
the application of the newly developed computer program, accurate statis-
tical estimates of long time series describing the fluctuating wind com-
ponents can be obtained with either the dual or the triple split film TSI

probes.
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Figure 9. Filter Shape Before (top) and After
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Figure 13. Power Spectrum of the Simulated Time Series.
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Figure 14. Power Spectrum of the Longitudinal Velocity Component.
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Figure 15. Power Spectrum of the Lateral Velocity Component.
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Figure 16. Power Spectrum of the Vertical Velocity Component.
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Figure 17. Cospectrum Between Longitudinal and Vertical Velocity
Components.
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Figure 18. Power Spectrum of the Longitudinal Velocity Component.
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Figure 19. Power Spectrum of the Lateral Velocity Component.



138

1000 I T — I
RUN 2, TSI #1122
o SEGMENT AVERAGING
v COMBINED SMOOTHING
100 |- -
0
3
o
EE 0+
=
L)
ol +
ODI -
OOOI 1 | 1 1
000 o0 o} 10 10 100

f, (1/sec.)

Figure 20. Power Spectrum of the Vertical Velocity Component.
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Figure 21. Power Spectrum of the Longitudinal Velocity Component.
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Figure 22. Power Spectrum of the Lateral Velocity Component.
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Figure 24. Power Spectrum of the Longitudinal Velocity Component.
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Figure 25. Power Spectrum of the Longitudinal Velocity Component.
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TABLE I. PERCENTILES OF THE STANDARD NORMAL

DISTRIBUTION.

PLT < TX] T PIT < T ™
.00 -3.09 .600 0.25
.005 ~2.58 .700 0.52
010 -2.33 .800 0.84
.020 ~2.05 .850 1.04
.025 -1.97 .900 1.28
.030 -1.88 . 950 1.645
.040 -1.75 .960 1.75
.050 -1.645 .970 1.88
.100 -1.28 .975 1.97
150 -1.04 .980 2.05
.200 -0.84 .990 2.33
.300 ~0.52 .995 2.58
400 ~0.25 .999 3.09
500 0

1)

*
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’ *
TABLE II. PERCENTAGE POINTS OF REVERSE ARRANGEMENT DISTRIBUTION.

[ o

0.99 0.975 0.95 0.05 0.025 0.01
10 9 11 13 31 33 35
1 12 14 16 38 40 42
12 16 18 21 44 47 49
13 19 22 25 52 85 58
14 24 27 30 60 63 66
15 28 32 35 69 72 76
16 34 38 41 78 81 85
17 39 44 48 87 91 86
18 45 50 54 98 102 107
19 52 57 61 109 113 118
20 59 64 69 120 125 130
21 66 72 77 132 137 143
22 74 80 86 144 150 156
23 82 89 95 157 163 170
24 91 98 104 171 177 184
25 100 108 114 185 191 199
26 109 118 125 199 206 215
27 119 128 136 214 222 231
28 130 139 147 230 238 247
29 140 150 159 246 255 265
30 152 162 171 263 272 282
31 163 174 184 280 290 301
32 176 187 197 298 308 319
33 188 200 210 317 327 339
34 201 214 225 335 346 359
35 215 228 239 355 366 379
36 229 243 254 375 386 400
37 243 258 270 395 407 422
38 258 273 286 416 429 444
39 274 289 302 438 451 466
40 290 305 319 460 474 489
41 306 322 336 483 497 513
42 323 340 354 506 520 537
43 340 357 372 530 545 562
44 357 376 391 554 569 588
45 375 394 410 579 59% 614
46 394 413 430 604 621 640
47 413 433 450 630 647 667
48 432 453 an 656 674 695
49 452 474 492 683 701 723

50 473 495 514 710 - 729 751



TABLE II (Continued)
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0.99 0.975 0.95 0.05 0.025 0.01

51 494 516 536 738 758 780
52 515 538 558 767 787 810
63 537 561 581 796 816 840
54 559 584 605 825 846 871
55 582 607 629 855 877 902
56 605 631 653 886 908 934
57 628 655 678 9N7 940 967
58 652 680 703 949 972 1000
59 677 705 729 981 1005 1033
60 702 731 756 1013 1038 1067
61 727 757 782 1047 1072 1102
62 753 784 810 1080 1106 1137
63 780 an 837 1115 1141 1172
64 806 838 866 1149 1177 1209
65 834 866 894 1185 1213 1245
66 861 895 923 1221 1249 1283
67 890 924 953 1257 1286 1320
68 918 953 983 1294 1324 1359
69 948 983 1014 1331 1362 1397
70 977 1014 1045 1369 1400 1437
71 1007 1045 1076 1408 1439 1477
72 1038 1076 1108 1447 1479 1517
73 1069 1108 1141 1486 1519 1558
74 1100 1140 1174 1526 1560 1600
75 1132 1173 1207 1567 1601 1642
76 1165 1206 1247 1608 1643 1684
77 1198 1240 1275 1650 1685 1727
78 1231 1274 1310 1692 1728 1771
79 1265 1309 1346 1734 1771 1815
80 1299 1344 1382 1777 1815 1860
a1 1334 1379 1418 1821 1860 1905
82 1369 1415 1455 1865 1905 1951
83 1405 1452 1492 1910 1950 1997
84 1441 1489 1530 1955 1996 2044
85 1478 1526 1568 2001 2043 2091
a6 1515 1564 1606 2048 2090 2139
87 1552 1603 1646 2094 2137 2188
a8 1590 1642 1685 2142 2185 2237
- 89 1629 1681 1725 2190 2234 2286
90 1668 1721 1766 2238 2283 2336



TABLE IT (Continued)
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0.99 0.975 0.95 (.05 0.025 0.01
9N 1707 1761 1807 2287 2333 2387
92 1747 1802 1849 2336 2383 2438
93 1787 1843 1891 2386 2434 2490
94 1828 1885 1933 2437 2485 2542
95 1870 1927 1976 2438 2537 2594
96 1911 1970 2020 2539 2589 2648
57 1954 2013 2064 2591 2642 2701
98 1996 2057 2108 2644 2695 2756
99 2040 2101 2153 2697 2749 2810
100 2083 2145 2198 2751 2804 2866

*Values of t,.. such that Prob[t, > t,. ] = a.
L3a L 2o



TABLE III. PERCENTILES OF THE CHI-SQUARE DISTRIBUTION.*

Degrees 2 2 2 2 2 2 2
of X.99 X.975 X.95 X.90 X.10 .05 X025 X.01
Freedom
1 00016 00098 .0039 ;0158 2.7 3.84 5.02 6.63
2 020 051 103 211 4.61 5.99 7.38 9.2]
3 115 216 352 584 6.25 7.81 9.35  11.3
4 297 484 71 1.06 7.78 0.49  11.1 13.3
5 554 831 1.15 1.61 9.24 111 12.8 15.1
6 872 1.24 1.64 2.20 10.6 12.6 14.4 16.8
7 1.24 1.69 2.17 2.83 12.0 14.1 16.0 18.5 .
8 1.65 2.18 2.73 3.49 13.4 15.5 17.5 20.1
9 2.09 2.70 3.33 3.17 14.7 16.9 19.0 21.7
10 2.56 3.25 3.94 4.87 16.0 18.3 20.5 23.2
12 3.57 4.40 5.23 6.30 18.5 21.0 23.3 26.2
14 4.66 5.63 6.57 7.79 21.1 23.7 26.1 29.1
16 5.81 6.91 7.96 9.31 23.5 26.3 28.8 32.0
18 7.01 8.23 9.39 10.9 26.0 28.9 31.5 34.8
20 8.26 9.59 10.9 12.4 28.4 31.4 34.2 37.6
22 9.5 1.0 12.3 14.0 30.8 33.9 36.8 30.3
24 10.9 12.4 13.8 15.7 33.2 36.2 39.4 43.0
26 12.2 13.8 15.4 17.3 35.6 38.9 41.9 45.6
28 13.6 15.3 - 16.9 18.9 37.9 41.3 24.5 48.3
30 16.0 16.8 18.5 20.6 40.3 43.8 47.0 50.9
20 22.1 24.4 26.5 29.0 51.8 55.8 59.3 63.7

8kl



TABLE II! (Continued)

Deg;;ees 2 2 2 2 2 2 ?
0 X,99 X.975 X, 95 X.90 X.10 X.05 X.025 X, 01
Freedom
50 29.7 32.3 24.8 37.7 63.2 67.5 71.4 76.2
60 37.5 40.5 43.? 46.5 74.4 79.1 83.3 88.4

2

*Values of Xy-a
3

AREA = ¢

6tL
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TABLE TIV. RESULTS OF RUN 10 MEAQUREMENTS: TSI #1192 (TRIPLE SPLIT

FILM).
Block Means of the Velocity Components in
Block Number the Sensor Oriented Coordinate System

v(A) fps v(B) fps v(C) fps

1 7.159 0.315 19.118
2 6.872 : 1.232 156.274
3 6.664 12.136 10.567
4 7.306 11.930 12.626
5 6.235 5.927 14,096
6 2.369 3.524 10.346
7 4.893 1.206 15.555
8 6.932 -0.821 23.212
9 6.692 -1.322 26.001
10 4.141 - 2.94% 16.273
11 5.224 1.336 16.416
12 5.282 3.082 15.915
13 10.639 14.491 17.574
14 8.049 3.766 21.162
15 8.247 6.195 17.395
16 6.072 0.441 , 22.161
17 7.211 0.205 22.961
18 7.766 0.980 18.673
19 5.015 ~-0.723 18.888
20 5.915 -0.143 19.546
21 8.586 2.636 20.457
22 7.390 3.662 15,965
23 4.374 6.836 13.083
24 4,337 -0.866 19.375
25 3.472 -1.763 21.035
26 4.058 -0.796 20.246
27 6.941 1.359 18.494
28 7.503 1.036 20,262
29 9.147 9.244 15.837
30 7.301 10.648 11.629
31 8.605 7.725 12.869
32 7.905 4,548 16.498
33 4.665 1.491 16.278
34 6.505 2.555 16.601
35 7.208 6.773 12.281
36 5.946 5.954 11.613
37 9.551 13.367 13.501

38 7.881 3.950 14.587
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TABLE IV (Continued)

Block Means of the Velocity Components in

Block Number the Sensor Oriented Coordinate System
v(A) fps v(B) fps v(C) fps
39 5.730 1.15] 16.624
40 -1.979 1.008 11.641
41 2.102 2.806 11.127
42 0.468 3.19 8.227
43 1.599 3.204 7.521
44 7.733 7.867 12.748
Sample Mean - 6.129 fps 3.734 fps 16.188 fps

Number of Reverse
Arrangements of 504.0 424.0 584.0
the Block Means o

Means, varjances and covariances of the velocity components and
temperature in the mean wind coordinate system: .

17.429 fps
0.0 fps
.129 fps
39.110 °F

15.778 (fps)
-2.474 {fps)2
-3.903 (fps)?.
-0.205% fps—°F
18.029 (fps)?
.012 {fps)?
0.513 fps:°F
10.4 (fps)?
~-0.105 fps~°F
0.455 (°F)

iunmn
[OV ]

REFEIEINEEE M =<

Hw i nmn g nuwn
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TABLE Y. RESULTS OF RUN 11 MEASUREMENTS: TSI #1192 {TRIPLE SPLIT
FILM) -- GILL ANEMOMETERS.

‘Block Means of the Velocity Components in the Probe

Block Oriented Coordinate System
Number  Gill Anemometers TSI #1192 Gill Anemometers TSI #1192

v'(x*) v'(x*) v' (y*) v (y*)

1 33.839 31.774 7.490 8.561
2 27.660 25.584 7.645 8.140
3 29.385 26.814 10.668 11.404
4 22.272 18.846 18.131 14.929
5 27.244 23.009 16.073 16.95?2
6 26.837 22.699 16.747 17.116
7 26.221 22.869 13.638 14.326
8 20.513 18.016 12.177 11.590
9 16.328 14.732 12.509 9,598
10 24.719 21.331 17.402 15.866
1 25.447 22.354 11.876 12.642
12 16.918 15.709 9.262 8.018
13 24.315 . 20.883 13.089 13.879
14 26.210 22.893 12.069 12.099
15 30.838 27.496 11.497 12.394
16 32.487 28.336 14.951 15.874
17 28.082 25.038 10.749 11.963
18 26.172 24.006 8.004 8.302
19 26.893 25.376 5.158 6.:399
20 24.310 22.529 7.533 8.126
21 39.024 37.139 5.112 6.206
22 42.911 40.890 4,986 7.015
23 38.89% 36.741 6.889 8.387
24 40.385 38.757 2.037 3.641
25 39.766 38.061 3.621 5.018
26 37.026 36.001 3.353 4,697
27 39.881 38.289 ~4.187 -3.475
28 30.765 29.668 -2.398 -1.054
29 28.728 27.510 -1.806 -1.240
30 27.699 26.396 -3.908 - -3.883
3] 27.268 25.651 1.018 1.411
32 33.251 31.501 6.514 7.734
33 28.653 27.330 2.609 3.478
34 29.494 28.187 5.964 7.159
35 31.008 29.634 5.831 7.159
36 28.059 26.900 3.132 4.153

37 24.640 23.980 -1.387 -1.692



TABLE V (Continued)
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Block Means of the Velocity Components in the Probe

Block - Oriented Coordinate System
Number Gill Anemometers TSI #1192 G111 Anemometers 151 #1192
v' (x¥) v' (x*) v' (y*) v'{y*)

38 26.047 25.087 0.799 1.076
39 25.754 . 24.587 3.797 4.825
40 20.645 19.657 4,591 4,639
41 22.335 21.677 -0.353 -0.153
42 15.381 15.310 -1.259 -1.701
43 17.851 16.315 -4.003 -4.018
44 15.865 15.173 -2.678 -2.659

Number of

Reverse

Arrange-

ments of ,

Mo glock 5120 427.0 766.0 671.0

Sensor

Oriented

Coordinate

System

!

Mean Wind Components in the Probe Oriented Coordinate System

TSI #1192 Gill Anemometers
u' (fps) 25.93 27.91
y' {fps) 6.70 6.25
T §°F) 33.03
8 (deg.) -14.49 -12.62
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TABLE V (Continued)

Means, Variances and Covariances of the Velocity Components
in the Mean-Wind Coordinate System

TSI #1192 Gi1l Anemometers

U (fps) 26.778 28.600

'} gfps} 0.0 0.0

W (fps 5.920

u? (fps)2 35.914 26.367

uv (fps)2 2.464 0.319
uw (fps)2 -4.39]

ué fps-°F -0.743

gE_Efps;g 32.931 22.680

vw (fps 0.050

v8 (fps-°F) -0.242

Wl (fps)2 25.316

wg (fps-°F) 0.040

8% (°F) 0.367




TABLE VI. RESULTS OF RUN 12 MEASUREMENTS: TSI #122 (DUAL SPLIT FILM) -- GILL ANEMOMETERS.

Block Means of the Velocity Components in the Probe Oriented Coordinate System

Block Number Gill Anemometers TSI #122 Gi1l Anemometers TSI #122 TSI #122 -
v{x*) v(x*) v{y*} v(y*) v{z*)
1 24.132 23.535 -3.656 -0.149 7.976
e 23.528 23.560 -1.027 2.866 8.096
3 28,992 26.246 -9,957 -8.377 6.793
4 32.051 29.115 -3.910 -1.331 7.950
b 32.836 34.792 -5.209 -2,437 7.064
6 28.414 23.290 -18.330 -18.530 7.804
7 30.508 23.050 -24.876 -24.,837 7.244
8 26.462 18.599 -24.103 -23.335 5.787
9 22.803 20.223 -22.716 ~2%1.351 6.405
10 22.515 20.223 -7.472 -6.077 6.498
11 32.998 32.323 2.572 5.328 8.175
12 35.420 34.819 1.880 5.312 8.931
13 19.690 18.519 -7.062 -5.419 5.366
14 22.059 17.180 -14.803 ~-14.636 5.289
156 16.780 14.627 -9,382 -7.963 4.142
16 16.681 17.027 -2.512 - 0.433 3.9
17 22.781 21.644 -0.704 1.207 6.798
18 25.589 24.862 -N.144 3.554 8.288
19 36.042 32.616 -9.502 -7.801 6.364
20 23.357 21,106 -6.997 -4.233 7.121
21 18.160 16.151 -10.525 -7.953 4,729
22 23.236 14.392 -23.278 -22.111 6.049
23 19.137 16.359 -10.046 -9.157 6.888
24 17.285 16. 352 -4 860 -2.812 4.520
25 23.981 23.43] -0.543 2.057 4,689

qsi



TABLE VI (Continued)

Block Means of the Velocity Components in the Probe Oriented Coordinate System

Block Number Gill Anemometers TSI #122 G111 Anemometers TSI #122 TSI #122
v{x*) v(x*) v(y*) v(y*) v(z*)

26 21.584 20.232 -7.411 -5.219 5.268
27 17.827 11.484 -15.543 -14.812 4.806
28 22.796 15.873 -20.170 ~19.084 5.593
29 17.114 15.384 -5.864 -3.682 5.430
30 32.880 30.078 -7.292 -5.822 5.836
31 30.316 28.692 -4.863 -1.108 5.683
32 25.317 23.307 -5.360 -2.556 5.693
33 21.278 17.926 -10.252 -8.780 4.413
34 24.692 19.871 -15.139 -14.429 4.395
35 19.140 16.372 -9.616 -7.810 5.104
36 21.599 18.726 -10.101 -7.680 4.837
37 25.766 21.717 -10.178 -6.826 5.813
38 26.900 25.464 -3.067 0.537 5.895
39 39.215 37.735 0.576 5.472 - 7.868
40 29.653 25.839 -11.967 -10.007 6.523
41 24,603 24,219 -1.600 1.987 6.503
42 23.190 19.188 -13.438 -11.190 6.923
43 23.058 17.221 -16.795 ~14.658 3.632
44 17.602 14.790 -11.366 -9.,221 5.639

Number of

Reverse Arrange- 524.0 523.0 514.0 494.0 601.0

ments of the
Block Means

951



TABLE VI (Continued)
Mean Velocity Components in the Probe Oriented Coordinate System

STSI #122 56111 Anemometers TSI #122 Gi11 Anemometers
u' (fps) 21.750 24,772 21.750 24,772
vt (fps) -6.878 -9.014 -6.878 -9.014
W' (Fps) 6.107 6.107
T (°F) 41.609 41.609
8 (deg.) 17.550 19.995 17.550 19.995

Means, Variances and Covariances of the Velocity Components in the Mean-Wind
Coordinate System

STSI #122 5Gi11 Anemometers TSI #122 ~ Gil1 Anemometers

U (fps) 22.812 26.361 22.812 ' 26.361
V (fps) 0.0 0.0 0.0 0.0

W (fps) 6.107 6.107

Eg_(fps)g 34.863 27.760 35.559 28.320
uv {fps) -0.216 -3.393 -0.116 ‘ -3.239
uw {fps)2 -0.282 -0.285

ug fps-°F -1.182 -1.182

!E_(fpsgg 55.290 35.451 57.377 36.160
w (fps 9.241 9.412

V6 fps-°F -0.338 -0.298

we (fps)? 20.873 20.983

LS1



TABLE VI {Continued)

STST #122 §Gil1 Anemometers TSI #122 Gi11l Anemometers
we fps-°F 0.219 0.227
o2 (°F)2 1.452 1.468

§B1ock means removed.

8s(



TABLE VII.

RESULTS OF RUN 14 MEASUREMENTS: TSI-#122 -- GILL ANEMOMETERS.

BTock Number

Block Means of the Velocity Components in the Probe Oriented Coordinate System

Gil1 Anemometers TSI #122 Gi1l Anemometers TSI #122 TSI #122
v{x*) v{x*) v(y*) v(y*) v(z*)

1 27.628 26.230 14.520 15.538 6.729
2 27.143 25.422 14.621 15.258 6.440
3 26.295 24.621 13.140 13.171 5.488
4 18.198 18.103 6.020 6.836 4.866
5 25.149 23.531 10.516 11.415 6.182
6 30.664 29,643 14,508 15.209 7.989
7 25.101 24.066 10.748 10.844 5.784
8 26.115 24.250 16.188 16.088 6.887
9 31.156 29.846 10.589 11.733 6.228
10 26.985 24.673 -1.872 -3.296 7.295
1 31.578 29.201 18.478 18.559 7.719
12 35.638 33.469 19.658 20.491 8.862
13 28.971 27.138 9.979 10.512 7.365
14 26.242 24.870 12.074 12.676 6.943
15 23.638 22.676 10.260 10.612 5.101
16 23.057 21.433 13.697 13.658 5.845
17 31.742 28.310 20.198 19.890 7.806
18 33.644 31.865 17.692 17.668 8.193
19 26.085 23.935 15.668 16.013 6.009
20 25.228 24,271 10.891 11.562 6.729
21 25.775 25.187 2.402 Z2.172 6.951
22 24.197 23.540 7.788 7.601 7.842
23 28.916 27.966 12.146 13.293 7.141
24 23.690 21.835 ~2.67% -4.636 6.452
25 24.90 23.608 -4,543 -5.495 7.405
26 20.647 19.645 -5.765 ~5.584 7.069
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TABLE VII (Continued)

Block Number

Block Means of the Velocity Components in the Probe Oriented Coordinate System

GilT Anemometers TSI #1122 Gil1 Anemometers TSI #122 TSI #122
v(x*) v{x*) viy*) v(y*) v(z*)
27 25.743 24.216 ~5.777 -7.872 7.205
28 19.740 17.967 ~7.290 -9,133 7.400
29 26.619 24.414 12.687 14,010 7.710
30 26.126 25.368 4,391 4,101 6.588
31 27.358 25.690 ~5.627 -7.820 7.291
32 22.217 20.911 -3.553° -4.903 6.867
33 18.328 16.226 ~6.596 -8.?32 8.258
34 27.728 26.292 2.808 1.939 6.390
35 28.495 26.844 10.775 10.788 6.362
36 28.370 26.843 8.878 0.566 5.420
37 25.417 23.856 11.189 10.961 7.837
38 34.486 32.053 19.427 20.322 8.298
39 45.617 41.982 25.594 25.250 9.975
40 28.522 27.665 13.154 14.080 9,371
41 37.873 35.921 16.237 17.067 9.696
42 32.370 30.956 4. 584 3.508 7.454
43 21.294 20.853 4.196 3.971 3.768
44 19.579 18.862 2.896 2.408 6.338
Number of
Reverse Arrange- 472.0 467.0 558.0 564.0 375.0

ments of the
Block Mean
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TABLE VII (Continued)

Mean Velocity Components in the Probe Oriented Coordinate System

§TST #122 §Gi11 Anemometers TSI #122 Gi11 Anemometers
u' (fps} 25.597 27.142 25.597 27.142
v (fps) 8.416 8.519 8.416 8.519
Wt (fps) 7.035 7.035
T (°F) £5.000 55.000
B {deg.} =-18.200 -17.425 -18.200 -17.425

Means, Variances and Covariances of the Velocity Components in the Mean-Wind
Coordinate System

8TSI #122 56111 Anemometers TSI #122 Gi11 Anemometers
U (fps) 26.945 28.448 26.945 28.448
v (fps) 0.0 0.0 0.0 0.0
W (fps) 7.035 7.035
uZ (fps)? 30.694 - 27.325 31.365 28.088
uv (fps)s 4.043 2.825 4.231 2.937
uw {fps) ~0.486 -0.380
uo (fps-°F) 0.0 0.0
v2 (fps)? 50.041 35.886 50.761 36. 391
v (fps)? 2.765 2,776
ve {fps-°F) 0.0 0.0

L9l



TABLE VII {Continued)

STSI #3122 5Gi11 Anemometers TSI #122 Gill Anemometers
W2 (fps)? 17.705 17.758
ws {fps-°F) 0.0 0.0
62 (°F2) 0.0 0.0
§B]ock means removed.
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APPENDIX A
THE RESPONSE CHARACTERISTICS OF THE GILL ANEMOMETERS
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Sensor Response

The Gi11 anemometer utilizes propellers, the shafts of which are
parallei to each of the two perpendicular coordinate axes in the
horizontal plane. The polystyrene propellers have four blades and
are constructed to turn one revolution for each 31.7 cm of air
passing the propeller. Each anemometer contains a miniature
tachometer generator which is turned by the propeller and produces a vol-
tage that is related to the respective wind components. Since the
set of Gill anemometers were rotated with the TSI anemometers, thay
were oriented in such a fashion that one anemometer was on the
average in the direction of the mean wind and the second anemometer
perpendicular to the first one both in a horizontal plane. in this
orientation both Gill anemometers were calibrated in the wind tunnel
for velocities ranging from 10 fps to 70 fps and for various angles of
attack varying from -40° to +40° with respect to the mean-velocity
direction.

It is therefore suggested that this set of propeller anemometers
should not be used when the angle of attack is larger than +40° or
1ess than -40°, The velocities should not go beyond the range as
specified,

The velocity components can be obtained from the following
empirical relations which fitted the calibration data very well for

the above ranges in velocity and angle of attack:
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. E,

0.069 LR (A-1)

<
fl

{(Cos 8

and

-
I

= 0.085 Ey (A-2)

where Ey and Ey are the anemometer output voltages and g is the angle

of attack. Since the angle B is not known at the outset, a simple
iteration procedure is used to calculate the velocity component

v;. No single empirical relation was attémpted to be obtained since the
two propellers were always rotated in such a way so that one was

along the mean wind and the other one normal to it.

From the empirical equations obtained from the wind-tunnel calibra-
tion data one can easily see that these anemometers deviate sys-
tematically from the ideal cosine law and no reiiance can be placed
on just a single calibration with zero angle of attack.

In turbulent conditions, there can be large differences between
the indicated speed and the actual velocity. The differences arise
from sensor sensitivity to relative wind direction, sensor dynamic
characteristics, and to the data averaging procedure. The difference
between measurements with various common types of anemometers may
exceed 30 percent [62].

The response time of the rotating type of anemometers such as cup
anemometers and propeller type anemometers is always obtained by
letting the anemometers accelerate from rest to some equilibrium
speed of rotation depending on the wind velocity. The response of

the anemometers which are allowed to decelerate from some speed of
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rotation to rest is very difficult to realize in the wind tunnel.

As a consequence the response time is based on the acceleration of

the anemometers and the response for deceleration is assumed to be
similar. However, the cup anemometers and propeller anemometers are

known to accelerate faster than to decelerate with increasing and
decreasing wind velocities respectively. As a result, the calculated

mean velocity is estimated too high with respect to the actual velocity
when the anemometers are used in turbulent winds. In addition, the

output vo]taée of the anemometers shows a rectified undulation superimposed
on the mean voltage. The frequency and magnitude of this "ripple" depends
on the rate of rotation of the anemometer. If the propeller anemometers
are used for the measurement of fluctuating velocities the digitized

data will be affected by the presence of this undulation.

The calibration data have indicated that the output of the propeller
anemometer is related directly to the component of the velocity parallel
to its shaft. Because of varying response characteristics when the
propeller operates in a accelerating flow as compared to a decelerating
flow, the mean velocity is overestimated (See results in Tables V, VI,
and VII). Because of the limited response characteristics at fraquencies
higher than 1 hertz, the propeller anemometers underestimate the variances
and covariances of the different velocity comopnents. This fact is very
well ilTustrated if the spectra of the velocity components measured by
the Gill anemometers are compared with those measured by the fast-response

TSI anemometer (compare figure 18 with 21 and figure 19 with 22).



APPENDIX B
LISTING OF FORTRAN PROGRAMS

I. DATPI

II. TREND
I11I. DATP2

IV. TRANSFORM

V. POWER SPECTRUM
VI. CROSS SPECTRUM
VII. SIMULATION
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£ i o e e = o mm m e me—m mm e
c PPPPPP A KRRRR TYTTTF  1llll C
¢ P P A A R R T 1 ¢
c pPPPPP A A RRARR T 1 C
C P AAAAA e ¥ 1 C
C P A A R RR T 1 ¢
c P A AR R T 11111 C
[ e o e C
¢  DATA PROCESSING SYSTEM OF A SET OF FOUR DIGITIZED TIME SERIES c
€ FOR CALCULATING MEAN,CORRELATION AND TRANSFOKMATION MATRIX c
C Ul1,1)=X—COMPONENTS VELCCITY OF SENSOR 1,VIA) c
c . UL 2¢1)=Y-COMPONENTS VELOCITY OF SENSOR 1,V(B) c
c U13,1)=2Z-COMPONENTS VELOCITY GF SENSOR 1,VI(C) C
c Ul4e1)=TEMPERATURE OF SENSOR 1 C

DIMENSION U(4,8192) »UBBK(44+4)4BETAL (44),COVI4%5%,4) 1 DEGL44)
DIMENSION UBKY{44),UBTOTL(4) ¢ TOTREV(8)yTURI3),STDVIT{44,8, a),

LREVARR (4448 ) 4 BKVAR{ 4444+ 4)
C-~--————-*-——-—-—-*-~"-~—-————***---——-—-—---“*~——---*-*-*----—---———C
C CALL DATA FROM MAGNETIC TAPE
c NDTBK=DATBK=NUMBER OF DATA IN EACH BLOCK C
C NOBLK=12=NUMBER OF BLOCKS C
C IX=NDTRK=NUMBER OF DATA IN EACH BLOCK - C
C 18=THE BLOCK NUMBER C
C NTS=NUMBER OF TIME SERIES C

NTS5=4
NDTBK=8B192
NOBLK=44
BLKNO=NCBLK
I8=1

891



5000
7
10

C P

IX=NDTBK

L0 7 I=1,NDTBK

READI1G410) Ul4,1)2,U01,1),U002,1),U(3,1)
FORMATL4A4)

. ——— . — i o A T L L e g B S e ol g S e S A ML A A T S S T A T S T —

CALCULATE THE MEAN VALUE IN EACH BLOCK WHICH WE MIGHT CALL

TECEWISE MEAN

C UBBK( IBsJ)=FEAN VALUE IN EACH BLOCKyIB8=1921+ees NOBLKy J=19240a94

11

12
13

14

15

(s o i o s e e ——

. A e — o i T W W e Sl . s . e T e i il S T T

DG 11 J=1¢NTS

UBBK(I85J)=0.0

I=1

D0 13 J=1+NTS

UBBK{ I8,J)=UBBK{IB,J)+UlJ,I)
IF{] <EQ. NDTEBK) GO TO 14
1=1+1

GO T0 12

DAT 8K=NDTBK

DO 15 J=14NTS

UBBK{ 18,J)}=UBBK(1B,J}/DATBK
UBKT(IB)= SQRT(UBBK(IB 13**2+UBBKIIB:2)**2+UBBK§IB¢3)**2)

C CALCULATE THE TRANSFORMATIDN ANGLE BFTAI UN EACH BLOCK

C CALCULATE TNE MEAN SQUARES AND CORRELATIONS IN EACH BLOCK
C COV=MEAN SQUARES AND CORRELATIONS IN A BLOCK

C BKVAR=BLOCK VARIANCES AND CDVARIANCES

BETAL{IB)} = ATAN{-l. 22475*!UBBK(IB 2} -UBBKI IR, Bl)f(UBBK(IB 1]

1+UBBK{IB,2 }+UBBK( [B,3)))
DEG(IB)=(180.0/3.14159)%BETAL(IB)
DO 16 K=1sNT5

DO 16 J=1NTS

- —— —————————— ———— — - —

YOI OO

691



15 COV(IBsKyJ)=0.0
I=1
17 03 18 K=1,NTS
DO 18 L=1,NTS
18 COV (IDsKeL)=COVIIB K L I+UIK, T)*UIL, 1)
IFL] .EQ. NDTEK} GO 7O 191
I=1+1
GO TO 17
191 DO 19 K=14NTS
DO 19 L=1+NTS
19 COV{IBK4L)I=COVIIBsK,L)/DATBK
00 192 N=1,NTS
EKVAR{IByNyN)=COVIIB,NyNY-UBBKIIB,NI*UBBK (I8N}
192 STOVIT{IB,NsN}I=SQRT{ABS(BKVARI{IB,NyN}))
IF (1B .EQ. NOBLK) GO TO 3000
IB=18+1
GO 70 5C00
3000 CONTINUE
WRITE (6,100)

100 FORMATUIHL41Xs"'BK NO" 32Xy YMEAN VIA) ' 32X, MEAN V{BI" 42X, " MEAN VIC)'
193X, " MAGNITUDE Y y2Xy "MEAN TEMP*,2X,*BLK ANG* 43X "STD DIV VAY 42X,
2'STD DIV VB'42X,7STD DIV VL 42X,'STD DIV T'//)

DO 101 I8=1.NOBLK

101 WRITE{(64+102) IB.UBBK!IBvII;UBBK(IB;Z]:UBBK(Iﬂv311UBKT(IBl,UBBK([H
14)}sDEG(IB),STOVIT(IBy1,41),STOVIT(IB,2,2)STOVIT(IB4343),S5TOVITII8,
244 4)

102 FORMAT(3X2T1242X+F9.3,3{3X,F9.3),2XsF9.3,3X,F6.214(3X4F9,3)}

HERE BEGINS THE CALCULATION OF THE MEAN CR WE MIGHT CALL IT THE C
GRAND OR ACCUMNULATED MEAN,OR SAMPLF MEAN C
UBTOTLIJ) =ACCUMULATED MEAN,J=1+2434+4 C

C

A —— T ——— i P P S A E A e R o . . T . T T et i Sy A A A S T T {55 e S ——— —— e —

0LL



DO 20 J=1.NT5
27 UBTOTL(J)=0.0
J=1
21 DD 22 18=1,KCBLK
22 UBTOTLLA)I=UBTCTL(J) +UBBK{I8,J)
IFlJ .EQ. NTS) GO TO 24
J=J+1
G 10 21
24 D0 23 J=14NTS
23 UBTOTL{(J)=UBTOTL(J}/BLKNO
VTOTLI=SORTIURTOTL 1) #+¥2+UBTCTL{2 1¥*24URTOTL(3 ) **2)
WRITE{6+104) ({UBTOTL(J),J=1,NTS),VIOTLL)
104 FORMAT {IIIZX,'SAMPLE MEAN=Y 44F124695X, "TOTAL VEL. MAG.=',Fl2.6/)

O -- B C
'C  HERE BEGINS THE CALCULATIONS OF SAMPLE BETAS C
C  BETOL1=THE SAMPLE BETA c
o e e e S S C

BETOLY1 = ATAN{-1.22475%(UBTOTLIZ2Y-USTOTL{3)})/{(UBTOATL(1)+UBTOTLI{2)
L+UBTOTL(3))) '
BEDEG={180.0/3.14159}%BETOLL
WRITE(5,103) BETOL1,BEDEG
103 FORMAT(/2X, *BETOL1='4F18.8,5X,'BEDEG="*,F10.5)

RS

£ HERE CALCULATES THE NUMBER CF REVERSE ARRANGEMENTS FOR ST0. DEV. €

c IN EACH BLOCK C

fmmmmmm e m e e e e e c
NSTD=8

NTEST=NRCBLK-1
DO 181 I8=1,NOBLK
DO 181 I=1.+3
K=I+5
181 STOVITIIB ;KoKI=STOVIT{IBs1,41)

LLl



182

194

195

196
197

198

DO 182 IB=1,4NUBLK
STDOVITLIB +4,4)=UBKT(1IB)
STOVITIIB+5,5)=DEGLIB}
DO 182 I=1,3
STOVITUIB,I 41 )=UBBK(IB,T)
DO 194 IB=1,NOBLK

DO 194 I=14N5TD
REVARR{IB,I)=0.0

ig=1

K=18+1

DO 197 1I=1,NSTD

DO 197 JJ=KyNOBLK

IF (STOVIT(IB,11,11) .GT. STDVIT(JJ,II,111})

GO TO 197

REVARR{IB, I1)=REVARR(IB,I1)+1.0
CONTINUE

IF (IB .EQ. NTEST) GO TO 198
18=iB+1

K=IB+1

GO TO 195

CONTINUE

DO 190 J=1,NSTD

TOTREV{IJI=D.0

. DO 190 IB=14NTEST

TOTREVIJI=TOTREV{ J)+REVARR{18,J)
WRITE(&4201) (TOTREV(J)J=1,NSTD)

FORMAT(//10X,' TOTAL NO, OF REV, ARR,.==1,8F10.11

s70GP
END

GO TG 196

eil



C ot bk fikfeofoleiok e kol oo ek xRy TREND ke ek ek e ke ek ks

¢
C

C
C
c

THIS PROGRAM 15 US&D TG APPLY THE MOVING-AVERAGE AND DIFFERENCING
HIGH-PASS FILTER TC THE ORIGINAL TIME SERIES. c

—— v — " ———— T — " ——

- ——— —

DIMENSTON Ul4,16384),UBBK(4,8192)

S —_— e e e e e e e e . S c
NOBLK=NUMBER OF BLLCKS CONSEQUENTLY FILTERED. C
NDATA=NUMBER 0OF DATA POINTS 70O BE USED AT THE START OF FILTERING
PROCESS. ' C

- ———— VR o

. — . S S AT T e WY N oA Sy AL Skl AL Y Sk Wy AR St S S

NDATA=16384
NOBLK=43
NDTBK=NDATA/2
NHAL F=NDT 8K /2
NTS=4
18=1
DAT BK=NDT 8K
NEW=NDTBK+1
DO 1 1=1,NDATA
1 READ{10,2) U4, 1)U(1,1),U(2,1),U(3,1)
Z FORMAT(4A4)
GO TO 2000
1000 DD 3 I=NEW,NDATA
3 READ(10,2) Uty 10 4UCL D) y{291)4U(341)
2000 DO 4 J=1,NTS
4 UBBK(Jy1)=0.0
DO 5 J=1,NTS
DO 5 I=1+NDTBK
5 UBBK{Js1)=URBKUJy 1) +U{J i)
DO 6 [=14NTS
6 UBBK(T,1)=UBBK{I,1)/DATSK

ELL



io

11

5090

5050

GO 7 I=1,NTS
J=NDTBK +1
UBBKTI T« 1 )=UBBKITI, L)+ (U(T,J)-U{I,1})/DATRK
DO 8 J=14NTS
D0 8 I=2,NO0TBK
K=f-1
{=NDTBK+]
UBBKI{J, 1)=UBBK{J,KI+{UlJISLI-U(J,TI)}/DATRK
DG 9 K=1,NTS
DO 9 I=1,NDTBK
M=1
J=NHALF+M
UK T)=U{ K, J)-UBBKIK,1)
DO 10 1=1.NDTBK
FRITE{11,2) U(& 1)} 4UlLlyI}4Ul241),U(3,1)
DO 11 LL=1,NTS
DO 11 1=1,NDT¥TBX
M=1
=NDT BK+M
ULl I)=UulLL )
IF 118 4EQ. NOBLK) GO TO 5000
IB=YB+]
GO0 TO 1000
CONTINUE
WRITELG6,5CG50) 1B

FORMAT (20X,"NUMBER OF BLOCKS COMPLETEDR!',14)

SYOP
END

174}
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DATA PROCESSING SYSTEM CALCULATING VARIANCES AND COVARIANCES
PASED ON THE DATA READ FRUM THE TAPE WITH EQUALLY-WEIGHTED
RUNNING MEAN APPLIED. SAMPLE MEAN AND BETA ANGLE ARE READ FROM
PREVIOUS PROGRAM. THE PRINTED VALUES ARE THE STATISTICAL VALUES
IN THE MEAN WIND COCRDINATE SYSTEM.

THE MEANING OF THE CODE NAMES MAY BE READ FROM DATPL.

DIMENSION U(498192) 4COVI439%4+4),UBTOTL(4),SC0OV{444)4TUB(3)
DIMENSIGN E1(4,4),UMEAN(4) ,COVMEN(4,4) +TBINT(4)
DIMENSICN XB8AR(4),XSUM{4)

NTS=4

NDT BK=8192

NOBLK=43

BLKNO=NOB LK

DATBK=NCTBK

18=1

UBTOTL{1)= 6.128789

UBTOTL(2)= 3.733873

UBTQTL{3)=16.187836

UBTOTL(4)=35.109543

RETOLL= 0.529701

SINCE THE MEAN HAS BEEN REMOVED SG WE CALCULATE THE MEAN SUUARE

e T — i o . M T s S i
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C VALUF WHICH S5HOULD BE THE VALUE CLOSE T THE VARIANCES AND C
c CiVARTANCES G

e e

5000 00 7 1=1,.NDTBK
7T READ{10,10) Ut4, 11, UllyI1},Ul2,1F,U(3,1)
10 FORMATLA4A4)

[ e ot o e e e e e e e e e e S S S T T T m s L
G HERE THE SMALL NEAR ZERD MEANS ARE CALCULATED AND SUBTRACTED FROM

C THE DATAS IN THE BLOLK. C
[ emm e e o e s e e o s e T e ————— C

DO 81 I=1.NTS

81 XSUM{T}=0.0
DO 82 J=1,NTS
DO 82 K=1,NDTBK

82 XSUMLJ)I=XSUM{J) + UlJ,K)
DO 83 I=1,4NTS

83 XB3AR(I)I=XSUM{TI)/NDTBK
00 84 J=1,NTS
DO 84 I=1,NDTBK

84 UlJ,1)=ULJ, 1}-XBAR(J}

e e e e c
c BLOCK VARIANCES AND COVARIANCES ARE CALCULATED IN THE FOLLOWING C
e e C

DO 16 K=1,NTS
NO 16 J=1,NTS
16 COVIIBsKyJ)=0.0
=1
17 DO 18 K=1,NTS
DG 18 L=1,NTS
18 COV {IBsK,L)=COVIIB KoL D #UIK, TI%ULL,T)
IF(1 .EG. NDTBK)} 6O TO 191
[=1+1

9/L



c
c
C

GO T 17
191 DO 19 K=1,NTS
DO 19 L=1,NTS
19 COVUIBWK L)=COV{IB,K,L)/DATEK
IF (I8 .EQ. NOBLK)} GO TQ 3QC0
18=18+1
GG T4 5000
3000 CONTINUE

o —— e — Y il il T o

HERE BEGINS THE CALCULATION GF THE SAMPLE VARIANCES AND COVARIANCES
FOR THE WHOLE LENGTH OF THE DATA
SCOV=SAMPLE VARIANCES AND COVARTIANLCES
DO 25 K=1,4NTS
DO 25 J=1.NT5S
25 SCOVIK,J)=0.0
i8=1
26 DD 27T K=1,NTS
GO 27 L=14NTS
27 SCOVIK,LI=SCOVIK,L)+COVIIB.K,L)
IFLIB LEQ. NDBLK) GO TO 28
1B8=1B8+1
GO TO 26
28 DO 29 K=1,NTS
DO 29 L=14NTS
29 SCOVIKL)=SCOVIKy LllBLKNG
HERE BEGINS THE TRANSF&PMATION OF MATRIX
Fli4y4) IS THE MATRIX TRANSFORMATION FROM THE SENSJOR DIRECTIAN

TO THE MEAN WIND DIRECTION

e e i ——— —— T . T —— o o Y= o 744 T S . o T 7 TR o o o T D S . S . T S A o o T e A L St . S U i S S

00 43 I=1,NTS

—— —— i — o i s i e T L S A S YL i A A o b e e AP

—— ———— i i —— Ty i T L S A T — —— -y —

LLl



UMEAN(I)=0.0
L3O 43 J=1,NTS
EI{I,4)=0.0

43 COVMEN(1,J)=0.0
E1{1+1)=0.57735#CCS{BETOLL)
E1{1, 2)=0.57T7T35%SIN{(BETCOL1)
E1{1+3)=-0.8L650
F1(2,1)=0.57735%COS{BETOLI)-0.TOTLIL*SIN{BETOLL)
El{2+2)=20.57735*SIN(BETOLL1)+0,70711*COS{BETOLL)
El(2+:3)=0.40824
E1{3,1)=0.57735%COS{BETOLL)+0, 70711 #SIN(BETOLL)
E1{3,2)=0.57735%SIN{BETOL 1)-0.70711%COS(BETOLL)
El{3,3)=0.4C824%
El(454)=1.0

________ [p—— . 8. ek S g e S T S . o __.._...-....__.........._________..____{:
UMEAN(I) IS5 THE MEAN WIND VELCCITY COMPUNENTS & TEMPERATURE C .
COVMEN{I,J)]IS THE VARIANCES AND COVARIANCES OF WIND TURBULENCE IN S
THE MEAN WIND DIRECTION. C
_____________________________________________________ c
1=1
46 DO 45 J=1,NTS
UMEAN (T }=UMEAN{ T)+E1(J, I )*UBTOTL(J)
DO 45 K=1,NTS
DO 45 L=1,NTS . ,
45 COVMEN{ I J)=COVMENT{ I J)+EL(K T )I*EL(L,3)%SCOVIK,L)
IF (1 .EQe NTS) GO TO 47
I=]4+1}
GO TO 46
47 CONTINUE
______________________________________________________________________ C
WRITTEN STATEMENTS C
______________________________________________________________________ C



WRITE(64105)
105 FORMAT(1HL »4X"BEFGRE TRANSFORMATION ', 27X, *HMEAN WIND DIRECTIONS'/)

WRITE{6,106)
106 FORMATU2X,"CURRELATION NDL'+3X,"SAMPLE VAR, & LCOVARL',10X4'VAR.E

ICOVARLY 45X *VELDOCITIES? /)

DI 107 K=1,NTS

DO 107 L=14NTS
107 WRITE(6+108) KoL, SCOVIK,L) yCOVMENI{K,L },UMEANIK)
108 FORMAT (TX91243X91298XsF10.3+415X+F1043,8XsF8.3)

VIOTLI=SORT{UBTOTLIL) *%2+UBTOTL{ 2 J**2+UBTOTL{3) *%2)

DO 32 1=1,.,3

32 TBINT{I)}=SQRTISCOVII,I}I/VTOTL]

WRITE{6,207) {TBINTI(I),I=1,3)
207 FORMAT(//72X, "TURBULENT INTENSITIES=?,3F10,.6)

DC 113 I=1+3
113 TUBIT)=SQRT{(COVMEN(I, I})/VTOTL]

WRITELGs114) (TUB(1),1I=1,3)
114 FORMAT (/772X '"TURBULENY INTENSITY IN THE MEAN WIND DIRECTION=',

1L3F8.4)

STOP

END

T4



c###*$**#*$*##*****#*#**#***#**TRANSFGRM*******************************C

D e e e e e c
Cmmmmmmm= TRANSFORM THE DATA FROM THE SENSOR ORIENTED DIRECTION TQ THE C
[ ———--—-MEAN WIND DIRECTION FOR SPECTRUM CALCULATIONS-1192 & 1193----- c
C THE MEANING OF EACH CODE MAME MAY BE SEEN FROM DATPl. . C
€ e o e e e

DIMENSION UC4y8192) 4V{4+B192) 1E1(4e4)

NTS=4

NDTBK=8192

NOCHK=1

NOBLK=38

RETOL1= 0.6165
C —mm e ———— e TRANSFORMATIONS=—————m—————=— e = c

DO 3 I=1,NTS
DO 3 J=1.NTS

3 E1I,4)=0.0
E1{ly1)=0.57735%COS{BETOLL)
E1(1,2)=0.,57T735%«SIN(BETOLL}
Fl1(1+3)=-C.81650
E1(2v11=0.57?35*CGS!BETOL1)—0-70711*SINIBETGLII
E1(2,2)=0.57735%SIN(BETOL1Y+0.70711*#COS(BETOL1)
E1{2+31=0.4C824
F1(3,1)=0.57735%COS{BETOLLI+0.TOTLI#SIN{BETOLL)
Ell 3,2)=0,. 57735*51N(BETOL1)-0 T0711%COS{BETOLL )
£1(3,3)=0.4C824% _
El{4,4)=1.0

1000 DO 1 I=1,NDTBK

1 READ{10,10) Ulay, 11,001, 1), UL2,1),Ul3:+1}

10 FORMAT (4A4)
DO 2 T=1.NTS
00 2 J=1,ADT3K

2 VIil+4)=0.0

08l



46

45

47

2000

999

1=1

BG 45 K=1,NDOTBK

DO 45 J=1,NTS

VIIaK)I=VIT4K) + ELLI, 1) *U(J4K)

IF (1 «EQe NTS} GO 7O 47

I=1+1 ‘

GO TC 46

CONT INUE

DO 9 I=1,NOTBK

WRITEUL1911) VU4asl}aVI1,1)4V(2Z2,1),v{3,1)
FORMAT (44A4])

IF (NOCHK EQ. NOBLK)Y GO YO 2000

NOCHK =NOCHK +1

GO 140 1000

CONTINUE

WRITE(6,9%99) NOCHK

FORMAT{5X, "NUMBER OF BLOCKS TRANSFORMED',15)
STOP

END

181
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c
C
c
¢
c

A OO 0O

s AR B E AR AR AR AR L LS REREEPOYER SPEL TR UM sk ok ok bR F R xR AR AT KK
e e e e e i o P e e e o e e e e e
THIS PROGRAM CALCULATES THE PUWER SPECTRAL DENSITY ESTIMATES C
INCLUCING THE DATA TAPERING, FAST FCURIER TRANSFORM AND SMODTHING
TECHNIGUES, . C
———————————————————————————————————————————————————————————————————— C
CIMENSIUON Uil8l92]), SPl(ﬁ097’15P2(4097119311(94}13Ppl4097)
DIMENSICN FLEG(Q#)QFNEQ{94)gFHEQ‘QQ)
DIMENSION F{R192),D(820),H{820)
CIMENSICN C(2049),X1(8192),2(20481}1,V{81%2)
DIMENSION FREQ{94),FLOGI94),PNORM(34)
COMPLEX®*8 EsXsZ
____________________________________________________________________ C
NDTBK=NUMBER OF DATA PCINTS IN EACH BLCCKED TIME SERIES C
CAT BK=NCTBK C
NOS LK=AUMBER OF BLGCKS USED IN THE SPECYRAL ESTIMATE. L
¥ AVE=NUMBER OF SPECTRAL VALUES AS A RESULT OF COMBINED SMOOTHING €
ATS=NUMBER OF TIME SERIES TO BE PRECESSED C
NOWID=AUMBER UF DIFFERENT DATA WINDOWS 7O BE TAPERED "
NCK=CONTRCGL NUMBER USED FOR NUMBER OF DATA WINDOWS C
KUUNT=TFE CONTRCL NUMBER CEPEKRCS ON THE TIME SERIES MEFDEDS C
OIVIS=MCNDO=1/10 NUMBER CF TAPERING PCINTS G
______________________________________________________________________ C

NDTAK=8152
DATBK=NOTEK
NHALF=KETBK /2
HFALFN=NHALF
MAVE=94
MP=G4

CN=MAVE

Lc=CH

CU=LN

¢8L



DT=G.0C05
NOBLK=43
BLENO=NCBLK
NTS=2
- NCK=1
NOW ID=1
KOUNT=1
P1=3,1415%
MODNU=820
OIVIS=MCDAG
NHF=NHALF+]
WRITE(H6,201)
201 FOR“AT(IHivSOX;'CGSlNE TAPERING WINDOW'//)
D{I) AND H(I) ARE THE END TAPERING FUNCTIGN IN CDSINE TAPER DATA
WINDOK. FUI) IS THE NUMBER ONE DATA WINDOW USED FOR TAPERING
DO 12 I=1,NOTBK
P=i
12 FUI) = 1.0-U{P-{DATBK-1.0)/2.0)/(IDATRK+140)/2.0))*#%2
DO 14 I=1,KCDND
P=1
14 DULI)=Ca5%( 1o 0-CCS(PI*P/CIVIS))
00 16 1=1,MCOND
oP=q
16 H(Il"C.E*(l Q-CES(PIF{DATREK=-P}/LIVIS))
THIS PART CALCULﬁTES THE FECQUERCIES,DF IS THE LCwWESY
CNYQ IS TRE NYQUIST FREQUENCY . DANDADR=BANUAIOTH
FLEG=FREQ=FNEC=FMEQ=DIFFERENT REPRESEATATIONS ©°F FREQUENLY VALUES

A ———— —— o — T ] . — . " ——————

Pp=1.0/{LATRK#2T)

C
C
C

€8l



ODNYQ=1.C/12.0%DT)
EANDWE=CN*DF
L1l=DF
£2=n1
L3=D2
CC 66 [=1.8
p=1
66 FLEQ(1)=P*DF
B0 &1 I=9,38
p={
L=P~6.0
61 FLEGQ(TI)}= (4.0*(Q~1.0} + 2.5}*DF
DO 62 1=35,¢£2
G=1
P=0-6.0
62 FLEQUI =116.0%{P-25,0) +9,5)%(1
DC 63 1I=£3,8¢
P=i
63 FLEQI Tl (84.0%(R-49.0) +33.5)¥%02
O 64 1=B7,54
R=1I
55=R-6.0
64 FLEQIL)= (258, 0%(S55-73.C) +125.5}403
OO 65 I[=14NP :
FREQUEIJ=FLEQLI)
FNEQUI=FLEGQ{I])
6% FMEQU]I)= FLEQ(I)
DATA READING FRUM TAPE
KCUNT=THE CONTRGOL VALUES USER T3 RPEAL CIFFERENT DATA SITS

—————————————— i ——— - — i =y o T T = - T PY WA T e —— A Ul " —— .
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DO 104 =1 4NHF
104 SP2{1)=C.0
4000 1B=1
GO TG {1s253)s KOUNT
1 READ (10,113 U
11 FORMAT{A4)
6O T 100¢C
2 REWINC 10
4 READ(10,21) U
21 FORMAT(4X,A4)
GL TO 1000
3 REWIND 19
5 READ(1C,21) U
31 FORMAT{12X,A4)
1000 CONTIAUE

(= e e e e e e e e ———— e e e

G FILTERING OF THE TIME SERIES WITH MOVING AVERAGE ALREADY APPLIED C

c TGO ADJUST THE TIME SERIES TC NEAR ZERDO MEAN., SMALL #SMEAN VALUES C

C ARE AGAIN CALCULATED AND SUBTRACTED FRCM THE VALUES ©F DATA PQOINTS

C IN EACH 8LOCK.

o e e e e e e e e e e e e it L
X5um=0.0

PC 81 I=1,NDTEK
81 XSUM =U(1} +XSUM

XBAR=XSLM/DATEK

'C 82 1=1,NDTBK
B? LLED)=L(]) -XBAR

o o o ¢
€ STATLMENTS USED TU MULTIPLY DIFFERFRT WINDUWS C
T e T c

GO T (l444145 )y NCWID
144 00 15 1=t .MCOND

G81



i5

17

145
18
530

C{I}=ULtI}*CI1)
DD 17 I=1,MCDND
K=14T7372
ULK)ISUCKIHH(T }
G0 To 500

N0 18 K=1,NCTBK
ULK)=U{K)EFIK)
CONTINUE

R T o

c

191
28
1072

CALCULATE THE FOURIER COEFFIENTS BY USING FAST FOURIER TRANSFORM C

00 992 K=1,NDTBK
VIKY = 0.0
CALL FFT tU.VeX)

CALCULATE ThE SPECTRAL VALUES TOTALING 4097 POINTS. THESE VALUFS
ARE ACJUSTED 6Y A SCALF FACTCR DUE TC CDSINE TAPERING. LOOP 102 C
IS5 TU SUMMING SEGMENTLY ALl THE BLOCKLCC SPECTRAL VALUES. LOOP 109
TS 749 AVERACGE THEM. SPPI{T) ARE THE VALUES SAME AS SP2(1}. C

DO 102 I=14NHF

SPLITI=2.CHCT#(REALC X (1 }I**2+4AIMAGE X T ))%52)/0ATBK
IF (NCWID NF. 1) GC TD 98

O 101 K=1,AHF

SPLIK) =11.0/0.875)%SP1(K)

080 133 I=1,NHF

SP2OLI=SP2{1)+5P1(])

IF (1B LEQ. NCBLK) GQ TD 6000

IB=18+1

GG TS (14445), KCUNT

O CONTINUE

LC 10% T=1,NHT

981



OO OOO™

13% SP2LT1)=SP2{1)/3LKNO

B0 121 I=1.NHF
121 SPPIT)=5P2(11}

WRITEL6,222) {SP2{1)sI=1,NHF)
222 FOURMATISX,l0F1044]

FCR FREQUENCY SMONTHING,THE ESTIMATED SPEfTRUM MAY BE COUNSIDERED C
AS PEPRESENTING THE MIDPEINT CF THE FREQUENCY INTERVAL

SINCE ONLY HALF NUMBER OF THE POINTS ARE UNIQUE AFTER TRASFUORM c
THE SPECTRAL AVERAGE IS PERFORMED BASEL UPGN THE TOTAL OF 4096 "
VALUES. CCNSEQUENTLY 94 SMGGTHED SPECTRAL VALUES ARE CALCULATED,

DC 22 I=9,94
22 PSL101)=C.0
00 71 K=2,%9
J=K=~1
71 P511(J)=5P21(K)
L=190
MA=13
Ma=4
K=9%
24 DO 23 l=L,MA
23 PS1L(K)=PSLILI{K)+SPPLI)
IF (K «ECa. 38} GO TO 25
K=K+1
L=l +M4
MA=MA+MG
GO TG 24
CONTINUE
P42 J=9,38
42 PS1104)I=PS11tJ} /40
L=130

[AS]
W

8L



52
53

54

55
56

57

prge

MB=14%

Mla=1l4

K=39

00 53 I=L,MB
PSLI{K)Y=PS11{K)+5PFP(]]}
IF (K LEC. &2) GD T0 54
K=K+1

L=L+Ml}¢&

FB=MBE+M1E

GO 10O s2

CONTINUE

DO 43 J=39,62
PS11(Ji=PS11{J)/16.C
L=514%

MC=5T7

Me4a=64

K=63

DO 56 I=L¢NMC
PSI1{K)=PSLI(K)+SPPLI)
IF {K JEGa 86) GG TO 57
K=K+]

L=iL+H64

MC=MC +ME 4

GO T 5%

CONTINUF

GO 44 J=63 486
PSLLLA)=PSLLI(J) /64,50

1 =295

MU= 23085

F2538=256

K=nT

9% [=L ¢ M

a8l



59 PS1ILK)=PSLI(K}I+S5FPPI{]}
IF (K JEL. S4) GU TO 60
K=K+1
L=L4MZ2EE
FD=MO4+M25¢8
GG TO 56

60 CONT INUE
DO 45 J=87,94

45 PSI1(4)=PS11{J)/280.C
DG 27 LL=1,NKP

27 FLOG(LL)=ALLGIFREGI{LL))
DD 28 1=1,NP

28 PNURM{II=FREQUII)}*PS11(1)

T —— T T T T At i S " i . T T A — . ] W —————— -

1IF {(NOWID +EQe 2 -AND. KCOUNT LEG. 1) GO TO 32
CO TC 3¢
32 WRITE(6433)
33 FORMATI1IH1,50X, *WINDOW NUMBER 1'//)
36 CONTINUE
KRITE(64+1C6)
106 FORMAT {10X."SMOGTHED SPECTRUMY ,SX,"FREQUENCY ' 25Xy FREQ. MULTPID
1SPECTRUN',5X, "LOG COF FREQWL'/)
DC 107 I=1,NP
107 WRITE (£41CE) PSll(I);FKEQ(Il,PhBRP(Ii,FLGC{Il
108 FORMAT (14X sFl0.4+8XsFBee14XsF104498%4FBas)
THE CCONTROLLED VALUE CF NTS witl CBTAIM THE CALCULATICNS OF
CIFFEREANT NUMBER OF TIME SERT1ES., THE CONTROULLED VALUE OF NOK
WILL CALCLLATE DIFFERENT DATA WINDOWS.

— s o i S o gy . oy oo S e B s i S " W _ T P Y ). - W Ty W i T i — ey Vo i W Sl WL Y okl S e . U e e ekl T - o

68L



aEaleEslelsNelaNeRsEala]

IF (KCUNT «EQa. NTS) GO TG 3600
KCUNT=KLCUMNT +1
00 110 I=1,NHF

110 sP2{1)=0.0
GO T 4000

2033 CONTINUE ‘
IF {NCWID <EQe NCK) GO TO 37
hOWID=NCKID+]
L0 111 I=14MNHF

111 sP2(1)=0.0
REWIND 1C
KOUNT=1
G TO 4000

37 CONTINLUE

sSTOP
END
SUBRCGUTINE FFT {UsVv.X)
IMPLICIT REAL*4(A—-H,P-1)
LIMENSICN Cl2049),X18192),2(2048},3(38152),v(8192)
COMPLEX*B E4X,27

061

_________________________ o o e o o e S o 2 i . £
N = TCTAL KC. CF DATA
MS = STAGE NO .
AJ = TOTAL NO. OF ACOCITION ( AND SUBTRACTION ) STEPS IN EACH STAGE
NJ = TOTAL NO. OF ACCITICNS ( OR SUET. ) EN ONE ADDITION STEP
IA = STARTIANG NO. OF EACH ADDITION STEP
NT = ENDIMNG NC. OF EACH ARDITION STEP

J = ADDITICN STEP NCo IN EACH STAGE

I +» KA = SUBSCRIPT OF NEW X IN EACH STAGE
ENVERT=1 1S WUSED TO CRTAIN THE INVERSE FOURITER TRANSFORM. FOR ANY
CTHER NUMBRERS OF INVERT INDICATES FCURIER TRANSFURM, C



INVERT=3
N=8192Z
NN=N/ 2
KNM=NN/2
CKK=NN+1
FMM=NM+]
CALL CUSINE (NyNNoNM,C) -
CG 12 I=l1l4N
12 X{I)=CrPLXLULT) VII))
NS=1
dJd=hN
Nu=1
1L NI=NJ/2
TA=]
NT=NU
BU 71 L=1,N¥
LA=L+AM
71 Z4iL)=X{LA)

GG 2 J=1.NJ
NA=NA-NL
NB=ND4AU
IF (J-NI) 41,42,43
41 E=CMPLX{CINA),-C(NB))
fa TN 42
43 E=CMPLX{-CINA),~CINB))
42 ©F S I=IA,NT
IF {J.LE.NI) GO TG 81

161



8

i

82

8

3

IC=1-hM

IB=T+NN

KA=KA+]

K=KA+MU
XAKAY=Z{1CI+X(IB)

XK )=(Z(IC)-X(1B))=E
GO TO 9

IC=4M-1

18=IC+AN

KA=KA-]1

K=KA-NU

IF (JLEC.ME) GO TC 82
X{KAY=(X{ICI-X(IBi)*E
GO TG 83
HAKAY=X(1C)-X(0IB)

XK =X{1C)+XE 1B}
CONTINUE

T A=TA+NKU

KT=NT+NU

IF (JeNELKI) GO TO 22
NA=MM4+AL

NB=1-NU

KA=NN

G0 10 2

KA=#

CONTINUE

o ————— T _ . —————— . b S} 0 o . o T S T ot T D S 7 3. VD o, i (Yol N . W . S 2

IF INJLEQLZY GO TO 11
hU=2x %NS

MES=NS+]

hd=NIT

CCTO 1

26l



I1 U0 21 I=1aNN
I B=T+NN
E=X{1)+X{IB)
X{IB)=X{1)-X{18B)

21 X{1)=¢
(ommmmm o e C
C THE NEXT EIGHT CARDS ARE USED CNLY IF INVERSE FOURIER TRANSFORM IS
C NECESSARY. IN THIS CASEs THIS SUBRGUTINE IS USED TD OBTAIN A REAL
c TIME SERIES U{I) INSTEAD GF USING FGR SPECTRAL CALCULATIONS. C
C e e - i L Bl e Fhm T St P . o T S S A S T o . 7 S T 2 . e s 7 o i . i . o " o it o Bl o " e o i i o . e . e C

IF (INVERT .EQ. 1) GO TO 27
GO TGO 28

21 CC 23 ¥I=1,K
23 X{1)=X{i}/N
U (1) = REAL (X(1))
DO 25 1=24N
25 U (1) =REAL{X(N=-I+2})
28 CanTINUE
RETURN
END
SUBRGUTINE CUOSINE {NsNNsNMsC)
DIMENSICN C(2049)
Th=NN
ANG=3.1415%92T7/TN
INTR=N/8
LS=€0% (ANG)
SN=SIN (ANG)
({li=1.
IR
ci1i¥=0q,
e 39 J=14INTFH
Ji=Jt+]

gol



39

JJ=NME2=-Y
ClIIY=CLIIXCS-C(JJ)*SN
JM=NH+ 1-J
COIMI=CLJIIRSNHC {JJ)ACS
RETURN '

END

vl
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AR KR EA AL IR AR FEELRRRCRUSS SPFCT RU Mt srdook ok ot g o o 300 oo o s ok ok oo e

THIS PROGRAM CALCULATES THE PLWER SPECTRUM, CO-SPECTRUM, GUADRATU-
FE SPECTRUM, CROSS SPECTRUM, PHASE ANGLE AND COUHERENCY FUNCTIGN C
£Y GOING THROUGH DATA TAPERINGo SPECTRAL SMOOTHING TECHNIQUES. C

DIMENSICN U(81921rV(BlQZl,SPA(éOQ?},SPB(#GQ?},SPC(#OQ?),SPD(#O?TJ.
LSPLI40971,5P2{40C37) 3 CSP{4097)4QSP(A0FT)FREQIS41sFLOGI94}
DIMENSICN AA{1) +B8BU1)sURE(4OIT)IUIM (4097} VRE(403T7),VIM{4097}
CIMENSICN F(8192),0(820),H{820)

CIMENSICN C(2049)+X{(8192)3,202048)

DIMENSECN PS11(94),P522(941.0512(%4),05121(94)

CIMENSIGN AMPL2(94),C0H12(94),PH5({94) ,LEGPS(94%)

DIMENSICN PNCM1194) ,PNOM2(94),CSNOMI94) (QSNOMI94)

DIMENSICN FLEQ(94),FNEQ(94) ,FMEU({T4)

CIMENSICN CROS(94),CRSNM{94),CRS{10)

COMPLEX AA,BB

CUMPLEX®*38 Ey K;Z

—————————————————————————————————————————————————————————————————— g
EXPLANATION OF THE CIFFERENT SYMBCLS USED IN THIS PROGRAM CAN BE C
CBTAINED FROM THE POWER SPECTRUﬁ PROGRAM. C

__________________________________________________________________ C

WDTBK=8192
CATBK=NUTRK
MHALF=NCTBK /2
HALFN=NHALF
NHF=REALF+1
MAVE=S4

NP=94
CN=MAVE

NS LK=43
BLEKANG=ANCELK

G61



NT5=1
hCK=1
NUOWID=1
KOUNT=1
DT=0.00%
PI=3.1415%
MCDNO=820
DIVIS=MCDAC
WRITE(64201)
201 FORMAT(1HL,50Xs *COCSINE TAPERING WINDCW'//)

£ m o ot e ¢
c WINDOW CALCULATIONS c
Cim m o o o e e e c
DG 12 1=1,NDTBK
P=1

12 FLI) = 1.0-({P-{CATEK=-1.0)/2.03/((DATEBK+1.01/2.0) ¥x%2
10 14 1=1,MCOND
P=]
14 GII}=Cua5%{]1.0-CCS(PI%P/CIVIS))
DO 1& 1=1,8CDND
P=1
16 H{I1=0.5%¥{1.0-COUS{PI*(DATBK-P)/DIVIS)}

e

L THIS PART CALCULATES THE FREQUENCIES

CF=1l.G/{CATBK*DT)
[NYG=1.C/02.,0%DT)
EANDWD=CN*DF
Cl=06f

U2=r1

G3=D2

D0 66 I=148

961



p=1
66 FLEQUI)=P*DF
BG 61 125,38
PeP=1
G=PPP~-b,0
61 FLEQUI)= {4.0%{Q-1.0) + 2.5)*DF
00 62 1=39,£2
$5=1
62 FLEQUII={16.0%{P-25.0) +9.5)*01
DC 63 1=¢3,86
KLP=I
R=RLP-6.C
63 FLEGII)= (64.,0%¥(R-45.0]) +33.5)*D2
DO 64 1=817+94
PQrR=1
S55=PHUR-6.0
64 FLEQ{I)= (25€.0%155-73.0) +12G.5)*D5
DO 65 I=1lNF
FREQUI}=FLEG(T)
FNEQ(II=FLEG{I)
65 FMEQ(1)=FLEG(])
DO 27 LL=1,NP
27 FLOGILLY = ALOG(FREGILL)]

[t e o e e o e e e e c
C NATA READING FRGM TAPE ' C
L e e e e e e e e e e e e e e e e e T S e C

DO 104 I=1,NHF

5PiI(1)=0.0

SP2{1)=C.0

C5P(T11=0.0

104 WsPEl)=C.C

{61



431310 [38=1
GO TO (142,431, KOUNT
(== mr e = LRSS SPECTREUM FOR U AND | == vm—— e e— e — ——— e C
DO 13 I=1.NCTEK
READ (10,11) ULT),vil)
FORMAT(4X sA444X3A%)
GC TO 1640
L==—rmrmre e —-==={ROSS SPECTRUM FUR U AND V ———r——e e e e =
2 REWIND 10
4 OC 20 I=1,NETBK
20 READ{1G,21) ULIY,.V(T)
21 FURMAT(4X,284)
GO TO 1400
e e CRGSS SPECTRUM FUR T AND W ~=r—~ermr e e e e e e i C
2 REWIND 10
5 DO 30 1=1,KECTEX
3G READCLID,210 UtE).VWeT)
31 FORMAT{A448X,A4)
1500 CONTINUE

-

1
1

£ o o e e e e e e e e e C
C NEAR ZEKG MEAN VALUES ARE REMOVED FROM THE FILTERED TIME SERIES. ©
G = e o e e e c
XSUMU=C. O
X SUMY=0.0

CC 51 T=1,NDTEK

XSUMU =UlI) +XSuMu-
91 ASUMY =VII} +XSUMY

XBARUSXSUMU/DATEK

XTARV=XSUMV/DATEK

T 82 [=1,NOTBK

U(I) =U(l) ~XDARY
ar V{{)=V{I} =-XpAuy

g6l
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GO TG (1444145),NCWID
144 §0 15 I=]1sMCCNC
VII)=wlI)*D(I)
15 UlTI=ulT)*Dll)
DO 17 I=1,4,#0CDND
K=1+7372
VIK)=VIK)*H{1)
17 C{KI=U{K)I*H(I)}
60 To 5CC
145 DD 18 K=1.NCTBK
VIKI=V(K)%F{X)
13 U(K)=U(K) *F {K)
500 CONTINUE
THE FAST fOURIER TRANSFURM IS CALCULATED 8Y STORING UlI) IN THE
REAL PART AND VII) IN THE IMAGINKARY PART,
CALL FFT (U,V,.X)
AA[L)Y=CWPLXT REALUX1)},040)
BB{L)=CMPLX(AIMAG(X(1)),0.0)
URE(1)=REAL(AA(L)})
UTH{1}=AIFAGLAA(L))
VRE{1)=REAL{BR{1))
VIM(1)=AIMAGIEA(1))
OC 444 I=2,hEF
K=NUTREK-]142
URECTL) = REALLC X {1 ) + X tK) )/2.0)
UIMELY =AIMBGLL X (1 ) — X (K} )1/72.0)
VRECL) =ATMAGLLD X { I )} + X (K) }/2.0)
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444 YVIM{I) =-REALC{ X ( I ) - X (K} )/2.0)
£0 102 I=1l.NHF
SPALT)=2 0%CT*IURE(II*=2 + UIM{1)%%2)/DATEK
SPEA{I)=2. 0%DT*(VRE{ L} *%2 + VIN(T)*%2) /DATEK
SPCII3=20%CTH{URE{L)*VRE(L) + UIMITI)AVIM{I)I/DATBK

102 SPO{I )=2.C*DT*IURE(I)xvIM(TI) - UIM{IIEVRE(I})/DATEK
IF (NOWID «NE. 1) GO TG 98
DC 101 K=1,MHF
SPA{K)I=E1.0/0.B75)%SPA{K]
SPBUKI={Y0/0.875)%SPBIK)
SPCIK)I=(1.0/0.875)%SPCIK])

101 SPOUK)I={1.0/0.875)%5PD(K)

98 00 103 I=1,NHF
SPLIT}=SP1{I) + SPA(])
SP2({1)=5P2(1} + 5pPB(1)
CSP(I)=CSP{1) + SPC(I}

103 QSPLI }=QSPI{I) + SPDI(I)
If {IB .EQ. NOBLK)Y GO TO 6000
18=I8+1
GO TO {(1s44,5)y KOUNT

6000 CONTINUE

__________________________________________________________ c
F OR SEGMEhT SMOOTHING SUMMING NUMBER OF THE CORRESPONDING POINTS
IN EACH DES!GNATED BLOCKS. ALSO AVERAGED THE SUMMED VALUES. C
_____________________________________________________________________ C

DO 105 1I=]1NHF
SPL{I}=SPL(I)/BLKND
SP2(11=5P2(T1)/BLKNC
CSPUTI=CS5P{1)/BLKND
109 QSP(I)=CGSPUI}/BLKAD

o A L A S . L il o o . g e S e L Ak i B o s L o i s o e |

FOx FREQUENCY QMDﬂTHINC THE ESTIMATED SPECTRUM MAY BE CONSIDERED C
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PO OV

1132

8388
9939

71

24

LS REPRESENTING THE MIGPCINT CF THE FREQUENCY INTERVAL

S INCE GNLY KALF NUMBRER OF THE POINTS ARE UNIQUE AFTER TRASFCORM
THE SFECTRAL AVERAGE IS PERFCRMEL BASEL UPON THE TOTAL UF 40S0o
POINTS AND TOTAL CF 94 PCINTS ARE OETALED

e i o —— —— o i T i, T T T T T T i e o T o T T o <Al M S . S S T v SN S e Sl S o T e S SR = ==

DO 113 I=1.10

CRSII) = SQRTICSPII)*%2 + QSP(1)*%2}
DO G388 1=1,41GC
WRITE(645999) SPL{I1),SP2(I),CRSUI)LCSPLI},ASPLI)
FORMAT(10X y5F16.41

DD 22 1=9,NF
PS11{1)=0.0

Ps2211)=0C.0

€S512{ I¥=C.0

GS12(1)=0.0

DG 71 K=2,9

J=K~-1

PS11{J}=5SF11{K)
PS22(J)=SPZ(K)
CS512(J)=CSPI(K)
QSL2(JI=LSPIK)

L=10

MA=13

Mg =4

K=9 ‘ :

CO 2% I=L.MA
PSLYI(KI=PS1IL(K)I+SPLA(T])
PS22(K)=PS22{K}+5P21 1)
CS121K}=CS12(K}+CSP(I)
GS5S12{K)=gS12(K)+GSP{])
IF (K .FQ. 38) GO TG 25
h=K+]

Loe



25

52

53

54

43

L=L+M4

MA=MA+M4

GO 70 24

CONTINUE

DU 42 J=%,38
P511(J)=PS111J)/4.0
P522040)=P522(J4)/4 .0
C512(J)=CS120J) /4.0
Q512(J)=051214)/7/4.0
L=130

MB=145

Mlé=16

K=39

DO 53 I=L,N8
PS11{K)=PS1U{K}I+SPLI(I)
PS22(KI=PS2Z2{K)+5P2{ 11}
CS12(K}=CSL2IKI+CSPLI)
RS12(K)=QS512(K)+Q5P(I)
IF (K .EQe €2) GO TO 54
K=K+1

L=L+% 16

MB=MB +M16

G0 TG 52

CONTINUE

0O 43 J=39,¢€2
PS11€JY=PS110J}/16.0
PS22{J)=PS22(J)/1E.C
CS12¢J)=C512(J}/16.C
PS12(J1=QS812¢{J}716.0
L=514

MC=5T77

MO4=b4

c0¢



57

44

5%

K=&3

DO 56 I=L4MC
PSIL{K)=PSIL{KI+SFLLI)
PS22({K)}=PS22(K1+5P2(1)
CS12{K)=CS12(K)+CSP(T)
GS12{KI=Q512(K3+05P (1)
IF {K +EQe 85) GU TC 57
K=K+1

L=bL+M&4

ML=ML +ME4S

GO T3 55

CONTINUE

D0 44 J=€3,86
PS11{J)}=PS511(41/b64.0
PS22{J)=PS22(J)/64.0
C5121J1=CS12(J)/64.C
GS1213}1=QS121J}1/64.0
L=205C

MD=2305

M256=256

K=87

GG 59 [I=L M0
PS1I{K)=PS11{K}+5P1LT)
PS22(K)=PS22{KI+SP2(1)
CS12(KI=CS14{KI+CSPLI1])
GS120KI=QS12{K}+GSP ()
TF (K JEQe S4) GO TU 40
K=K+1

L=L+M25¢€

MU= D +M25€E

GG T 58

CONTENUE

£02



DG 45 J=E£T7,54
PS11¢J)=PS51114)/256.G
PS22(J}=PS5221{J}1/256.0
CS5120J1=CS512(J)/256.C
45 QS120(J4)=0S12(4)/256.0
NG 114 I=1,.NKP
114 CROS{II=SQRT{CS12(I}1**2 + QS12{1}*%*2)
DG 265 I=14NP
AMPIZ{I)=C512{1}*CS12(1) + QS5S12(1}1=Q512(1)
265 PHS(I) = + ATAN{QS12{11/C51211}])
DO 266 I=1,NP
CORLZ2(1)=AMPLZ2{1) /(PSL1{1)%PS2211]))
266 DEGPS{IN=180.0%PHSII)/{2.0%P 1)
D0 28 I=1,NKP
PNOMI{I)=FREQ(I)}*PS11(1}
PNOM2 LI )=FREQITI*P522(1}
CRSNMIT} =FREQ{II*CRECS(I)
CSNCMOI)=FREQ(IT)*{S512(1)
28 QSNUM{T)=FREQ{I)*QS12(1)

IF (NOWID «EQe 2 ~AND. KOUNT EG. 1) GO TGO 32
GC TQ 346 '
32 WRITELI6+433) :
33 FORMAT(LIHL, 50X, "WINDOW NUMBER 1'//) .
36 CONTINUE
WRITE(64106)

106 FORMAT(SX,'SMCD PUWER SPECT 11 ,5X,*SMCL PGWER SPECT 21',5X,'COSPEC!
1o 59X s "CUAGSPEC '+ SX 2 ' COHERENCY? o 5X, 'PHASEIDEGI P S5X PFREQT 92X 1EROSS
25PECY /)

OO 107 I=1,NP

¥0¢



107 wRITE(641038) PS11(1},PS2211),C81211),0S512(11,C0H120T).DEGPS(I),

LFREQUIILCRAOSIT)

1Ga FGRM&T(IOX,FIO.é,10X,F10-4,6X,F8.4,6X,F8.4,6X1F8.4;6X,F8-2,4X;F8.4

193X+F2.3)
WRITE(&,2(2)

203 FUORMAT(//5X, ' FREQ MTPD SPEC 1',.5X,!FREU MUTLD SPEC 2Y 45X 4 YFREQ MUT

110

2000

i1l

1LD COSPECY,5X s FREQ MUTLD QUALSPEC® 45X, 'L0G OF FREQ'5Xs "FREQ MULT
2CROSSY/)
DO 2046 T=14NP

WRITE(6+205) PNOMI(1),PRKCM2{I),CSNOMIT), QSNOMIT), FLOGIT)4CRSNMT
FDRMAT(IOX,FIO.%,15X,F10-4,10X,F10.4,10X;F1G.4,10X,F8.4,10X,F8.4)

et e C
NTS CCNTRCLS THE NUMBER OF TIME SERIES BEING CALCULATED. NCK €

CONTROLS THE NUMBER OF DATA WINDOWS TO BE USED. C

IF {(KCUNT

KOUNT=KCUNT+1
DU 112 I=1,4NHF

SP1LI)
sp2in)
Cs2(11)=C.
LSP{ii=C.
GG TC 4G
CONTINUE

TF (NEWID

oo

0.0
0.0
C.0
C.0
Iy

NOWID=NOWIO+]1
GO 111 I=14NHF

SPLITI=0.0
SP2111=0.0
Q5P{11=C.0
RENIND 10

NTS) GO TG 3000

NCK} GO To 37

502



PO aO0O0Oa0

a7

KOUNT=1

GOl 1O 4C4C

CONTINLE

STop

END

SUBRDUTINE FFT (L,V4+X)
IMPLICIY REAL®&(A-H,P-7)
COMPLEX#8 EyX,2Z

CIMENSICN C12049),X(81521,2(2048),Ul81921},v{81S52)

R ——— T —— T A i B g, g . gl ke, el AP L A S S T ——— — ————— T —— i — - t— " o . ——— - —

M
NS
NJ
U
TA
NT
J
1

. T " o} S gy S o s . e S . S T T T ——— -

12

TOTAL Nie. OF DATA
STAGE NC .

STARTING N0 OF EACH
ENDING NC. OF EALH AD

ooy

ADGIT IGN STEP
DITICN STEP

= AUDITICN STEP N{i. IN EACH STAGE

r KA = SUBSCRIPT [F NEW

INVERT=3

N=8192

AN=NJ 2

AM=Niy/2

KK=NN+1

0G 12 1=1,N
X{I)=CMPLXIUTT) 4V (1))
MMz AM 41

CALL CCSINF [Ny NMsNM4C)
NS=1

f.J= NN

X IN BEACE STAGE

————— ————— o o o oy .

TOTAL NO. OF ADDITION ( AND SUBTRACTION } STEPS IN EACH STAGE

TOTAL NO. DF ADDITIDONS ( CR SUBT. )} IN ONE ADDITION STEP

——— . ————————— e i . ot

90¢



hMU=1
1 NI=NJ/2
1A=]
NT=NU
DO 71 L=1,NN
LA=L+MM
71 Z{L)}=X(LA)

o i - L ———— —————— . M " . M P g sl g T T W T T gy M. W e Sy e L AL M T S T T . T T W W . s T . Al ot

20 2 J=1sNJ
NA=NA=-KU
NB=NB+MNU
IF (J-NI) 41,42,43
41 E=CMPLX(CINA},-CINB))
GO TN 42 :
43 E=CMPLX{-C{NA)},~CINE))
42 DO 9 I=1A4NT
IF tJ.LE.NI} GG TC 81
1C=1-8M
IB=1+AN
KA=KA+1
K=KA+AU
XUKAY=21I1C)+X (18]
X({K y=(Z{IC)-X{1B)}*E
Co TO 9
g1 IC=MM=1
{3=I1C+NN
KA=K &-1
K=K A-ANU

02



IF (JWLEG.NI) GO TG 82
KIKAY={X{IC)-X{18))}*E
Co 1O 83

82 X(KAY=X(IC)~-XT[IB)

523 X{KY=X[ICI+X{[8)

9 CONTINUE
TA=TA+AU
NT=NT+NU
IF (J.NELNTY GO TO 22
NA=MM+ANU
N8= 1-Ny
KA=NN
GO 10 2

22 KA=K

2 CONTINUE

IF (NJ.EG.2) GU TO 11

NU=2%#AS

NS=NS+1

NJ=NIT

GO TO 1 ,
11 DG 21 I=1,NN

I 8= [+NN

E=X{T1)+X{1B)

X{EBY=X(1)=-X(13)

21 X{I)=F
fmmm e e s e o e e e C
C THE FOLLOWING ELGHT STATEMENTS ARE USED ONLY [F IAKVERSE FOQURIER C
€ TRANSF{IRM IS MECESSARY [N THIS FET PROGRAM. »
C __________________________________________ . i o o i o L i B o e Ak D e i i S i C

IF (INVERT EQ. 1) GC TC 27
CC TO 28

802



21
23

25
2¢e

00 23 I=14N
X{Ii=XL{I/N

Uo(1) = REAL {(X(1))
0 25 I=2.N

U (1) =REALIXIN-T+2])]
CONTINUE

RETURN

LNl

SURROUTINE COSINE (NyKNsNM,C)
CIMENSICN C12049)
TN=NN
ANG=3.1415S27/TH
INTB=N/8

CS=C0S (ANG)

SN=SIN {(ANG)

ctid)=1.

1 I=NM+]

C(I1}=0a

00 39 J=1,INTE

JI=4+1

Jd=hM+ 2=
CLJII=CHII*CS-CUIJ)*SN
JM=NM+] -

S CtIMI=CLII*SN+CLJI)V%CS

RETURN
FND

60¢



r#######*¢$****##***####*##****S[MULATIGN**#***##*#*#*#*##****##***#***c
THIS PROGRAM SIMULATES A TIME SERIES RY USING THE VON KARMAN SEMI-
EMPIRICAL SPECTRUM BY USING FAST FOURIER TRANSFORM METHOD.

THE SAMPLING PATE IS 20 SAMPLES PER SECOND TO CREATE THE 32768
TOTAL NUMBER OF BATA POINTS FOR APPROXIMATELY OF 1638 SECONDS

C—-—.—-—-—n-“-“ —— ——

c
C

—

S e — — - — - —— —— o T

—— — T " o T o ————— o — A ——————

DEMENSION A(32768 1,8), M(3),
COMPLEX A

UBAR = 40.0

COEF = SQRT(32768.0%20,0/2.0}

INVIB192), S5{8192), PP{32768)

THE VON KARMAN SEMI-EMPIRICAL SPECTRUM
EOTH GAUSS AND HARM ARE SCIENTIFIC SUBROUTINE TN THE I8M PACKAGE

Tl 2 ——— o T A T . S " ——— T —— ——

I Dot P T AP -—

100

200

00 100 1 = 2,18384

ATl = 1

FREQ = (AI-1.0)/1638.4
SPECT = (57.6TUBARI}/

1 ((1a0+70.78%¥(1360.0%FREQ/UBAR)*%2) }**{5,0/6.,0))

H = SQRTISPECT)

CALL GAUSS (13,0.70790.0,ETA)
XREAL = COEF¥*H%*XI

XIMAG = CCEF¥H*ETA

Alls+191) = CMPLXIXREAL,XIMAG)
CONTINUE

DG 200 4 = 1416383

K = 16385 + J

L = 16385 - J

A(K,141) = CONJG{A{L,1,1)1}
CONTINUE

C
c
c

0lLe



Allslyel) = CMPLX (32768.0%UBAR,0D.C)
A(163854141) = CMPLX(0.0,0.0)

M{1l) = 15
M{231 = C
{3l = 0

CALL HARM(A,MsINVsSe—1,IFERR)
DO 400 I=1.+32768

400 PPLI)=REAL(A(I,1,1))
DO 300 N = 1,32768

300 WRITE{(1Q0,50) PPIN)

50 FORMAT (A4)

WRITE(64+3000) (PP{1),1=1,32768,32)

3000 FORMATIS5X,12F10.2)
sTOP
END

Le
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